新疆农业科学 ›› 2024, Vol. 61 ›› Issue (2): 345-354.DOI: 10.6048/j.issn.1001-4330.2024.02.010
马云龙1,2(), 谢辉2, 张雯2, 朱学慧2,3, 王艳蒙2,3, 麦斯乐2,3, 张佳喜1()
收稿日期:
2023-06-18
出版日期:
2024-02-20
发布日期:
2024-03-19
通信作者:
张佳喜(1973-),男,研究员,研究方向为农牧业机械,(E-mail)作者简介:
马云龙(1996-),男,硕士研究生,研究方向为果蔬干燥,(E-mail)1286001135@qq.com
基金资助:
MA Yunlong1,2(), XIE Hui2, ZHANG Wen2, ZHU Xuehui2,3, WANG Yanmeng2,3, MAI Sile2,3, ZHANG Jiaxi1()
Received:
2023-06-18
Online:
2024-02-20
Published:
2024-03-19
Correspondence author:
ZHANG Jiaxi(1973-), male, associate professor, research field:design and experimental study of agricultural and animal husbandry machinery, (E-mail)Supported by:
摘要:
【目的】研究不同温度条件下热风干燥对葡萄干色泽相关指标、水分扩散系数的影响,为绿色葡萄干的工业化生产加工提供理论和技术支撑。【方法】采用不同温度(30、32.5、35、37.5和40℃)对无核白葡萄进行干燥,分析温度对葡萄色泽、水分扩散系数及制干品质的影响,拟合干燥动力学模型。【结果】干燥温度为35℃时绿色葡萄干比率最高达到64%,色泽与原料的差异最小,色差ΔE仅为6.99,C、h0、L、a、b等色泽指标分别为18.23、1.4、14.57、2.99、17.95。叶绿素、叶绿素a、叶绿素b、类胡萝卜素、总酚含量分别为0.56、0.19、0.36、0.32、0.18 mg/g。35℃更适宜绿色葡萄干加工。最符合葡萄干燥的模型,决定系数 R2值最大,误差平方和、SSE和均方根误差RMSE均值最小,分别为 0.998 1、0.005 4和 0.007 7。绿色葡萄干最适宜的有效水分扩散系数为5.334 8×10-9。【结论】热风干燥温度为35℃时最有利于无核白绿色葡萄制干,35℃时有效水分扩散系数分别为30、32.5、37.5和40℃的114.13%、110.58%、95.17%和76.58%,Logarithmic 模型可以有效的描述热风干燥工艺条件下葡萄果实水分的变化规律。
中图分类号:
马云龙, 谢辉, 张雯, 朱学慧, 王艳蒙, 麦斯乐, 张佳喜. 温度对绿色葡萄干色泽及干燥特性的影响[J]. 新疆农业科学, 2024, 61(2): 345-354.
MA Yunlong, XIE Hui, ZHANG Wen, ZHU Xuehui, WANG Yanmeng, MAI Sile, ZHANG Jiaxi. Effects of temperature on color and drying characteristics of green raisins[J]. Xinjiang Agricultural Sciences, 2024, 61(2): 345-354.
图1 干燥装置结构 注:1.风机;2.加热装置;3.入风口;4.平衡板;5.称重传感器;6.螺纹杆;7.机架;8.触摸屏;9.重量数显;10.变频器;11.托盘;12.风机;13.风机;14.回风口
Fig.1 Structure diagram of drying device Note:1.Fan;2.Heating device;3.Air Intake;4.Balance board;5.Weighing sensor;6.Screw rod;7.Rack;8.Touch screen;9.Weight digital display;10.Frequency converter;11.Tray;12.Fan;13.Fan;14.ari outlet
序号No. | 模型名称Model name | 模型公式Model equation |
---|---|---|
1 | Weibull | MR=exp(-(t/b)a) |
2 | Henderson and pabis | MR=aexp(-kt) |
3 | Logarithmic model | MR=aexp(-kt)+c |
4 | Midilli et al. | MR=aexp(-ktn)+bt |
5 | Modified enderson and pabis | MR=aexp(-kt)+bexp(-gt)+cexp(+ht) |
6 | Newton(single-term exponential) | MR=exp(-kt) |
7 | Page | MR=exp(-ktn) |
8 | Two-term Logarithmic model | MR=aexp(-k0t)+bexp(-k1t) |
9 | Verma et al. | MR=aexp(-kt)+(1-a)exp(-gt) |
10 | Wang and singh | MR=1+at+bt2 |
表1 常见10种干燥模型
Tab.1 Common 10 drying models
序号No. | 模型名称Model name | 模型公式Model equation |
---|---|---|
1 | Weibull | MR=exp(-(t/b)a) |
2 | Henderson and pabis | MR=aexp(-kt) |
3 | Logarithmic model | MR=aexp(-kt)+c |
4 | Midilli et al. | MR=aexp(-ktn)+bt |
5 | Modified enderson and pabis | MR=aexp(-kt)+bexp(-gt)+cexp(+ht) |
6 | Newton(single-term exponential) | MR=exp(-kt) |
7 | Page | MR=exp(-ktn) |
8 | Two-term Logarithmic model | MR=aexp(-k0t)+bexp(-k1t) |
9 | Verma et al. | MR=aexp(-kt)+(1-a)exp(-gt) |
10 | Wang and singh | MR=1+at+bt2 |
温度 Temperature (℃) | L | a | b | ΔE | C | h0 | 绿品率 Green rate (%) |
---|---|---|---|---|---|---|---|
30 | 5.77±4.81c | 5.82±1.13a | 10.47±4.73c | 16.80±5.11a | 12.15±4.39c | 1.01±0.17b | 0.41±0.03c |
32.5 | 9.38±4.27b | 3.15±4.38a | 16.50±2.52b | 11.92±3.92b | 17.26±3.16b | 0.99±0.64b | 0.43±0.04c |
35 | 14.56±3.25a | 2.98±1.06a | 17.94±2.37b | 6.99±2.72c | 18.23±2.31b | 1.40±0.07a | 0.64±0.02a |
37.5 | 11.41±2.8b | 3.96±1.76a | 20.56±3.07a | 11.05±1.53b | 21.04±2.82a | 1.37±0.10a | 0.54±0.03b |
40 | 10.68±4.64b | 5.00±6.45a | 16.04±4.43b | 13.22±3.5b | 17.69±5.42b | 0.87±0.58b | 0.46±0.01c |
表2 不同温度条件下色泽指标
Tab.2 Color index at different temperature
温度 Temperature (℃) | L | a | b | ΔE | C | h0 | 绿品率 Green rate (%) |
---|---|---|---|---|---|---|---|
30 | 5.77±4.81c | 5.82±1.13a | 10.47±4.73c | 16.80±5.11a | 12.15±4.39c | 1.01±0.17b | 0.41±0.03c |
32.5 | 9.38±4.27b | 3.15±4.38a | 16.50±2.52b | 11.92±3.92b | 17.26±3.16b | 0.99±0.64b | 0.43±0.04c |
35 | 14.56±3.25a | 2.98±1.06a | 17.94±2.37b | 6.99±2.72c | 18.23±2.31b | 1.40±0.07a | 0.64±0.02a |
37.5 | 11.41±2.8b | 3.96±1.76a | 20.56±3.07a | 11.05±1.53b | 21.04±2.82a | 1.37±0.10a | 0.54±0.03b |
40 | 10.68±4.64b | 5.00±6.45a | 16.04±4.43b | 13.22±3.5b | 17.69±5.42b | 0.87±0.58b | 0.46±0.01c |
温度 Temperature (℃) | 叶绿素 Chlorophyll | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 类胡萝卜素 Carotenoid | 总酚 Total phenols |
---|---|---|---|---|---|
30 | 0.37±0.01d | 0.13±0.01d | 0.23±0.01d | 0.70±0.04c | 0.30±0.07a |
32.5 | 0.42±0.01c | 0.15±0.01c | 0.27±0.01c | 0.81±0.03b | 0.25±0.13b |
35 | 0.55±0.03a | 0.19±0.01a | 0.36±0.02a | 0.94±0.02a | 0.15±0.12d |
37.5 | 0.47±0.01b | 0.17±0.01b | 0.30±0.01b | 0.72±0.01c | 0.19±0.07c |
40 | 0.39±0.01d | 0.14±0.01d | 0.25±0.01d | 0.64±0.01d | 0.20±0.03c |
表3 不同温度下葡萄干叶绿素及总酚变化
Tab.3 Chlorophyll and total phenol of raisins at different temperatures
温度 Temperature (℃) | 叶绿素 Chlorophyll | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 类胡萝卜素 Carotenoid | 总酚 Total phenols |
---|---|---|---|---|---|
30 | 0.37±0.01d | 0.13±0.01d | 0.23±0.01d | 0.70±0.04c | 0.30±0.07a |
32.5 | 0.42±0.01c | 0.15±0.01c | 0.27±0.01c | 0.81±0.03b | 0.25±0.13b |
35 | 0.55±0.03a | 0.19±0.01a | 0.36±0.02a | 0.94±0.02a | 0.15±0.12d |
37.5 | 0.47±0.01b | 0.17±0.01b | 0.30±0.01b | 0.72±0.01c | 0.19±0.07c |
40 | 0.39±0.01d | 0.14±0.01d | 0.25±0.01d | 0.64±0.01d | 0.20±0.03c |
编号 No. | 模型名称 Name of model | 常数 Constant | 干燥温度 Drying conditions(℃) | ||||
---|---|---|---|---|---|---|---|
30 | 32.5 | 35 | 37.5 | 40 | |||
1 | Weibull | a | 0.022 57 | 0.024 74 | 0.024 57 | 0.046 95 | 0.039 18 |
b | 2.009 3 | 2.075 15 | 1.901 73 | 2.974 5 | 1.827 79 | ||
2 | Henderson and pabis | a | 1.097 12 | 1.095 35 | 1.109 92 | 1.078 42 | 1.039 05 |
k | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.022 25 | ||
3 | Logarithmic model | a | 1.357 4 | 1.334 | 1.362 69 | 1.198 53 | 1.089 04 |
k | 0.006 93 | 0.007 6 | 0.008 2 | 0.012 09 | 0.017 99 | ||
c | -0.330 68 | -0.305 37 | -0.321 54 | -0.166 53 | -0.083 12 | ||
4 | Midilli et al. | a | 1.026 72 | 1.449 3 | 1.041 14 | 1.433 48 | 1.009 93 |
k | 2.722 0 | 0.032 05 | -0.504 1 | 0.507 8 | 0.003 2 | ||
n | -5.738 15 | -5.716 08 | -5.721 61 | -5.592 83 | 0.032 05 | ||
b | 0.001 71 | 0.001 54 | 0.001 97 | 0.001 83 | -4.570 2E-4 | ||
5 | Modified enderson and pabis | a | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | 0.595 32 |
k | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.087 43 | ||
b | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | 22.164 49 | ||
g | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.039 35 | ||
c | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | -21.762 84 | ||
h | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.041 42 | ||
6 | Newton | k | 0.011 23 | 0.011 92 | 0.012 92 | 0.015 78 | 0.021 44 |
7 | Page | k | -0.105 99 | -0.109 21 | -0.113 68 | -0.125 64 | 0.0188 5 |
n | -0.105 99 | -0.109 21 | -0.113 68 | -0.125 64 | 1.137 07 | ||
8 | Two-term Logarithmic model | a | 0.548 56 | 0.547 69 | 0.554 95 | 0.539 2 | -18.800 28 |
K0 | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.035 68 | ||
b | 0.548 56 | 0.547 69 | 0.554 95 | 0.539 2 | 19.773 3 | ||
K1 | 0.012 33 | 0.013 07 | 0.014 34 | 1.017 03 | 0.034 56 | ||
9 | Verma et al. | a | 1.118 35 | 1.117 63 | 1.138 21 | 1.103 26 | 55.232 05 |
k | 0.012 57 | 0.013 34 | 0.014 7 | 0.017 43 | 0.033 94 | ||
g | 15.304 4 | 15.714 88 | 15.856 79 | 16.038 18 | 0.034 28 | ||
10 | Wang and singh | a | -0.008 1 | -0.008 67 | -0.009 32 | -0.011 82 | -0.015 47 |
b | 1.58878E-5 | 1.84101E-5 | 2.09099E-5 | 3.61915E-5 | 6.1261E-5 |
表4 不同温度下10种模型拟合常数
Tab.4 The fitting constants of 10 models at different temperatures
编号 No. | 模型名称 Name of model | 常数 Constant | 干燥温度 Drying conditions(℃) | ||||
---|---|---|---|---|---|---|---|
30 | 32.5 | 35 | 37.5 | 40 | |||
1 | Weibull | a | 0.022 57 | 0.024 74 | 0.024 57 | 0.046 95 | 0.039 18 |
b | 2.009 3 | 2.075 15 | 1.901 73 | 2.974 5 | 1.827 79 | ||
2 | Henderson and pabis | a | 1.097 12 | 1.095 35 | 1.109 92 | 1.078 42 | 1.039 05 |
k | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.022 25 | ||
3 | Logarithmic model | a | 1.357 4 | 1.334 | 1.362 69 | 1.198 53 | 1.089 04 |
k | 0.006 93 | 0.007 6 | 0.008 2 | 0.012 09 | 0.017 99 | ||
c | -0.330 68 | -0.305 37 | -0.321 54 | -0.166 53 | -0.083 12 | ||
4 | Midilli et al. | a | 1.026 72 | 1.449 3 | 1.041 14 | 1.433 48 | 1.009 93 |
k | 2.722 0 | 0.032 05 | -0.504 1 | 0.507 8 | 0.003 2 | ||
n | -5.738 15 | -5.716 08 | -5.721 61 | -5.592 83 | 0.032 05 | ||
b | 0.001 71 | 0.001 54 | 0.001 97 | 0.001 83 | -4.570 2E-4 | ||
5 | Modified enderson and pabis | a | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | 0.595 32 |
k | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.087 43 | ||
b | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | 22.164 49 | ||
g | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.039 35 | ||
c | 0.365 72 | 0.365 12 | 0.369 98 | 0.359 47 | -21.762 84 | ||
h | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.041 42 | ||
6 | Newton | k | 0.011 23 | 0.011 92 | 0.012 92 | 0.015 78 | 0.021 44 |
7 | Page | k | -0.105 99 | -0.109 21 | -0.113 68 | -0.125 64 | 0.0188 5 |
n | -0.105 99 | -0.109 21 | -0.113 68 | -0.125 64 | 1.137 07 | ||
8 | Two-term Logarithmic model | a | 0.548 56 | 0.547 69 | 0.554 95 | 0.539 2 | -18.800 28 |
K0 | 0.012 33 | 0.013 07 | 0.014 34 | 0.017 03 | 0.035 68 | ||
b | 0.548 56 | 0.547 69 | 0.554 95 | 0.539 2 | 19.773 3 | ||
K1 | 0.012 33 | 0.013 07 | 0.014 34 | 1.017 03 | 0.034 56 | ||
9 | Verma et al. | a | 1.118 35 | 1.117 63 | 1.138 21 | 1.103 26 | 55.232 05 |
k | 0.012 57 | 0.013 34 | 0.014 7 | 0.017 43 | 0.033 94 | ||
g | 15.304 4 | 15.714 88 | 15.856 79 | 16.038 18 | 0.034 28 | ||
10 | Wang and singh | a | -0.008 1 | -0.008 67 | -0.009 32 | -0.011 82 | -0.015 47 |
b | 1.58878E-5 | 1.84101E-5 | 2.09099E-5 | 3.61915E-5 | 6.1261E-5 |
编号 No. | 模型名称 Name of model | SSE | R2 | RMSE |
---|---|---|---|---|
1 | Weibull | 0.153 1 | 0.963 9 | 0.003 43 |
2 | Henderson and pabis | 0.107 3 | 0.974 6 | 0.002 403 |
3 | Logarithmic model | 0.007 7 | 0.998 1 | 0.000 535 626 |
4 | Midilli et al. | 0.055 4 | 0.979 6 | 0.035 4 |
5 | Modified enderson and pabis | 0.093 76 | 0.975 8 | 0.002 298 666 |
6 | Newton(single-term exponential) | 0.153 1 | 0.964 67 | 0.005 619 8 |
7 | Page | 0.153 06 | 0.963 86 | 0.003 682 6 |
8 | Two-term Logarithmic model | 0.094 8 | 0.976 66 | 0.002 224 8 |
9 | Verma et al. | 0.085 918 | 0.978 864 | 0.001 958 4 |
10 | Wang and singh | 0.010 839 6 | 0.997 265 3 | 0.001 276 6 |
表5 不同温度下10种模型拟合
Tab.5 The fitting results of 10 models at different temperatures
编号 No. | 模型名称 Name of model | SSE | R2 | RMSE |
---|---|---|---|---|
1 | Weibull | 0.153 1 | 0.963 9 | 0.003 43 |
2 | Henderson and pabis | 0.107 3 | 0.974 6 | 0.002 403 |
3 | Logarithmic model | 0.007 7 | 0.998 1 | 0.000 535 626 |
4 | Midilli et al. | 0.055 4 | 0.979 6 | 0.035 4 |
5 | Modified enderson and pabis | 0.093 76 | 0.975 8 | 0.002 298 666 |
6 | Newton(single-term exponential) | 0.153 1 | 0.964 67 | 0.005 619 8 |
7 | Page | 0.153 06 | 0.963 86 | 0.003 682 6 |
8 | Two-term Logarithmic model | 0.094 8 | 0.976 66 | 0.002 224 8 |
9 | Verma et al. | 0.085 918 | 0.978 864 | 0.001 958 4 |
10 | Wang and singh | 0.010 839 6 | 0.997 265 3 | 0.001 276 6 |
模型参数 Parameters models | Logarithmic model | Wang and singh |
---|---|---|
Ranges of SSE | 0.003 7-0.013 3 | 0.002 21-0.020 9 |
Mean value of SSE | 0.005 4 | 0.012 7 |
Ranges of R2 | 0.999 3-0.996 9 | 0.993 2-0.999 3 |
Mean value R2 | 0.998 1 | 0.997 3 |
Ranges of RMSE | 0.001 8-0.008 1 | 0.005 8-0.019 2 |
Mean value RMSE | 0.007 7 | 0.010 8 |
表6 2种模型在不同干燥条件下结果
Tab.6 Results of two models under different drying conditions
模型参数 Parameters models | Logarithmic model | Wang and singh |
---|---|---|
Ranges of SSE | 0.003 7-0.013 3 | 0.002 21-0.020 9 |
Mean value of SSE | 0.005 4 | 0.012 7 |
Ranges of R2 | 0.999 3-0.996 9 | 0.993 2-0.999 3 |
Mean value R2 | 0.998 1 | 0.997 3 |
Ranges of RMSE | 0.001 8-0.008 1 | 0.005 8-0.019 2 |
Mean value RMSE | 0.007 7 | 0.010 8 |
干燥温度 Drying temperature(℃) | 线性拟合方程 Linear fitting equation | R2 | Deff×10-9 (m2/s) | |
---|---|---|---|---|
干燥温度 Drying temperature | 30 | Y =-0.076 7X + 0.613 9 | R2= 0.837 2 | 4.671 0 |
32.5 | Y =-0.079 2X +0.466 2 | R2= 0.913 1 | 4.823 3 | |
35 | Y =-0.087 6X + 0.614 5 | R2= 0.850 5 | 5.334 8 | |
37.5 | Y =-0.092 1X + 0.288 8 | R2= 0.962 5 | 5.608 8 | |
40 | Y =-0.114 4X + 0.415 5 | R2= 0.957 9 | 6.966 9 |
表7 不同温度条件下葡萄果实干燥有效水分扩散系数
Tab.7 Effective moisture diffusivity of grape fruit during drying at different temperatures
干燥温度 Drying temperature(℃) | 线性拟合方程 Linear fitting equation | R2 | Deff×10-9 (m2/s) | |
---|---|---|---|---|
干燥温度 Drying temperature | 30 | Y =-0.076 7X + 0.613 9 | R2= 0.837 2 | 4.671 0 |
32.5 | Y =-0.079 2X +0.466 2 | R2= 0.913 1 | 4.823 3 | |
35 | Y =-0.087 6X + 0.614 5 | R2= 0.850 5 | 5.334 8 | |
37.5 | Y =-0.092 1X + 0.288 8 | R2= 0.962 5 | 5.608 8 | |
40 | Y =-0.114 4X + 0.415 5 | R2= 0.957 9 | 6.966 9 |
[1] | 马云龙, 张雯, 任艳君, 等. 葡萄干燥的研究进展[J]. 食品科技, 2022, 47(8):27-35. |
MA Yunlong, ZHANG Wen, REN Yanjun, et al. Research progress on grape drying[J]. Food Science and Technology, 2022, 47(8):27-35. | |
[2] | 侯旭杰, 张滨, 热衣木江, 等. 无核葡萄干护色保绿技术试验[J]. 塔里木农垦大学学报, 2000, 12(1):9-12. |
HOU Xujie, ZHANG Bin, Reyimujiang, et al. Experiment on color protection and green preservation technology of seedless raisins[J]. Journal of Tarim Agricultural Reclamation University, 2000, 12(1):9-12. | |
[3] |
康彦, 关志强, 李敏, 等. 预处理对无核白葡萄热风干燥特性的影响[J]. 食品科学, 2014, 35(5):119-123.
DOI |
KANG Yan, GUAN Zhiqiang, LI Min, et al. Effect of pretreatment on hot air drying characteristics of seedless white grapes[J]. Food Science, 2014, 35(5):119-123.
DOI |
|
[4] | 孟阳, 刘峰娟, 王玉红, 等. 热风干燥温度对无核白葡萄干品质的影响[J]. 食品与机械, 2015, 31(1):204-207. |
MENG Yang, LIU Fengjuan, WANG Yuhong, et al. Effect of hot air drying temperature on quality of seedless white raisins[J]. Food & Machinery, 2015, 31(1):204-207. | |
[5] |
Wen X, Li W, Li W, et al. Quality characteristics and non-volatile taste formation mechanism of Lentinula edodes during hot air drying[J]. Food Chemistry, 2022, 393:133378.
DOI URL |
[6] |
Pei Y S, Li Z F, Song C F, et al. Analysis and modelling of temperature and moisture gradient for ginger slices in hot air drying[J]. Journal of Food Engineering, 2022, 323:111009.
DOI URL |
[7] |
Shi S, Feng J, An G E, et al. Dynamics of heat transfer and moisture in beef jerky during hot air drying[J]. Meat Science, 2021, 182:108638.
DOI URL |
[8] |
Gao M Q, Wan K J, Miao Z Y, et al. Hot-air drying shrinkage process of lignite and its cracking mechanism[J]. Fuel, 2022, 316:123187.
DOI URL |
[9] | 刘辉, 卢扬, 叶夕苗, 等. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023:1-15. |
LIU Hui, LU Yang, YE Ximiao, et al. Comparative transcriptomic analysis of exogenous sulfur-induced cadmium stress response of buckwheat buckwheat[J]. Biotechnology Bulletin, 2023:1-15. | |
[10] |
Xiao H W, Bai J W, Xie L, et al. Thin-layer air impingement drying enhances drying rate of American ginseng(Panax quinquefolium L.) slices with quality attributes considered[J]. Food and Bioproducts Processing, 2015, 94:581-591.
DOI URL |
[11] |
Peter M, Liu Z W, Fang Y L, et al. Computational intelligence and mathematical modelling in chanterelle mushrooms’ drying process under heat pump dryer[J]. Biosystems Engineering, 2021, 212:143-159.
DOI URL |
[12] | Niu Y, Wei S Y, Liu H, et al. The kinetics of nutritional quality changes during winter jujube slices drying process[J]. Quality Assurance and Safety of Crops & Foods, 2021, 13(1):73-82. |
[13] |
Ortiz-RodrÍguez N M, MarÍn-Camacho J F, Llamas-Gonzalez A, et al. Drying kinetics of natural rubber sheets under two solar thermal drying systems[J]. Renewable Energy, 2021, 165:438-454.
DOI URL |
[14] | Biswas R, Hossain M A, Zzaman W. Thin layer modeling of drying kinetics, rehydration kinetics and color changes of osmotic pre-treated pineapple(Ananas comosus)slices during drying:Development of a mechanistic model for mass transfer[J]. Innovative Food Science & Emerging Technologies, 2022, 80:103094. |
[15] |
Masud M H, Himel H H, Arefin A M E, et al. Mathematical modelling and exergo-environmental analysis of drying potato samples in a waste heat-based convective dryer[J]. Environmental Challenges, 2021, 5:100372.
DOI URL |
[16] | Bousselma A, Abdessemed D, Tahraoui H, et al. Artificial intelligence and mathematical modelling of the drying kinetics of pre-treated whole apricots[J]. Croatian Society of Chemical Engineers/HDKI, 2021(11112). |
[17] |
El-Mesery H S, Sarpong F, Xu W X, et al. Design of low-energy consumption hybrid dryer:A case study of garlic(Allium sativum)drying process[J]. Case Studies in Thermal Engineering, 2022, 33:101929.
DOI URL |
[18] |
Meng Z F, Cui X N, Zhang H, et al. Study on drying characteristics of yam slices under heat pump-electrohydrodynamics combined drying[J]. Case Studies in Thermal Engineering, 2023, 41:102601.
DOI URL |
[19] |
Mbegbu N N, Nwajinka C O, Amaefule D O. Thin layer drying models and characteristics of scent leaves(Ocimum gratissimum)and lemon basil leaves(Ocimum africanum)[J]. Heliyon, 2021, 7(1):e05945.
DOI URL |
[20] |
Nanvakenari S, Movagharnejad K, Latifi A. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer[J]. Food Research International, 2022, 159:111617.
DOI URL |
[21] |
Lamrani B, Elmrabet Y, Mathew I, et al. Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector:application to Maghreb Region[J]. Renewable Energy, 2022, 200:48-58.
DOI URL |
[22] |
Sitorus A, Novrinaldi, Putra S A, et al. Modelling drying kinetics of paddy in swirling fluidized bed dryer[J]. Case Studies in Thermal Engineering, 2021, 28:101572.
DOI URL |
[23] | 董艳华. 无核白葡萄干燥过程特性及其变色机理研究[D]. 青岛: 中国海洋大学, 2015. |
DONG Yanhua. Study on drying process characteristics and discoloration mechanism of seedless white grapes[D]. Qingdao: Ocean University of China, 2015. | |
[24] | 叶令帅, 索玉静, 韩卫娟, 等. 早熟柿与晚熟柿在果实发育过程中的品质特性差异[J]. 西北农林科技大学学报(自然科学版), 2023, 51(7):83-91,106. |
YE Lingshuai, SUO Yujing, HAN Weijuan, et al. Differences in quality characteristics between early and late ripening persimmons during fruit development[J]. Journal of Northwest A&F University(Natural Science Edition.), 2023, 51(7):83-91,106. | |
[25] | 代羽可欣, 王宇滨, 赵文婷, 等. 热处理对鲜切马铃薯褐变及挥发性物质的影响[J]. 现代食品科技, 2022:1-8. |
DAIYU Kexin, WANG Yubin, ZHAO Wenting, et al. Effects of heat treatment on browning and volatile substances in fresh-cut potato[J]. Modern Food Science and Technology, 2022:1-8. | |
[26] | 黄健航, 郑峻, 杨斌, 等. 不同干燥温度对鹿茸菇品质及其抗氧化活性的比较分析[J]. 中国食品添加剂, 2022, 33(2):194-200. |
HUANG Jianhang, ZHENG Jun, YANG Bin, et al. Comparative analysis of quality and antioxidant activity of deer antler mushroom at different drying temperatures[J]. China Food Additives, 2022, 33(2):194-200. |
[1] | 刘玉芳, 张志刚, 李长城, 李宏, 程平, 杨璐. 不同温度和成熟度对杏贮藏期腐烂率和品质的影响[J]. 新疆农业科学, 2023, 60(9): 2189-2197. |
[2] | 李雪玲, 郭俊先, 陈莉, 宋鹤岭, 张众. 不同覆膜宽度对棉花农田环境的影响[J]. 新疆农业科学, 2023, 60(8): 1840-1847. |
[3] | 张超, 白云岗, 郑明, 肖军, 丁平. 极端干旱区葡萄水肥协同效应[J]. 新疆农业科学, 2023, 60(8): 1931-1939. |
[4] | 来汉林, 沈煜洋, 陈利, 杨红, 李月, 雷钧杰, 李广阔, 高海峰. 温度和盐胁迫对播娘蒿种子萌发特性的影响[J]. 新疆农业科学, 2023, 60(6): 1326-1334. |
[5] | 王文涛, 吴博, 邰红忠, 练文明, 戴翠荣, 李双江, 蒲艳梅. 新疆阿拉尔垦区不同播期对棉花生长的影响[J]. 新疆农业科学, 2023, 60(6): 1413-1422. |
[6] | 姚庆, 阿里别里根·哈孜太, 杨明花, 李强, 苗昊翠, 崔宏亮. 藜麦种子对萌发温度的响应及低温胁迫萌发能力鉴定[J]. 新疆农业科学, 2023, 60(5): 1141-1149. |
[7] | 王旭, 和海秀, 范守杰, 彭椿皓, 王瑞楠, 孟玲, 徐巧, 白如霄, 崔瑜. 生物降解地膜对甜菜生长及产量的影响[J]. 新疆农业科学, 2023, 60(11): 2735-2741. |
[8] | 户金鸽, 白世践. 无核白葡萄营养系果实品质及葡萄干特性分析[J]. 新疆农业科学, 2023, 60(11): 2751-2763. |
[9] | 丁宇, 张江辉, 白云岗, 赵经华, 郑明, 刘洪波, 肖军, 韩政宇. 不同水分处理干播湿出水热盐效应对棉花出苗率的影响[J]. 新疆农业科学, 2023, 60(10): 2380-2389. |
[10] | 施霁桢, 高清, 杨智超, 张四维, 罗荪琳, 黄上真, 张海亮, 郭彦斌, 郭刚, 俞英, 王雅春. 荷斯坦母牛血钾浓度的影响因素分析[J]. 新疆农业科学, 2022, 59(9): 2303-2309. |
[11] | 张锦强, 苏学德, 李鹏程, 杨湘, 李铭, 郭绍杰. 一年两熟夏黑葡萄日光温室温度变化与果实品质差异性分析[J]. 新疆农业科学, 2022, 59(8): 1889-1895. |
[12] | 袁洁, 丁新华, 贾尊尊, 付开赟, 吐尔逊·阿合买提, 郭文超. 氮素含量对亚洲玉米螟个体发育及种群增殖的影响[J]. 新疆农业科学, 2022, 59(6): 1458-1465. |
[13] | 徐斌, 阿塔吾拉·铁木尔, 张婷, 潘俨, 张连文, 谢晓定. 不同贮藏温度对西州密25号哈密瓜果实软化的影响[J]. 新疆农业科学, 2022, 59(5): 1135-1143. |
[14] | 户金鸽, 白世践, 陈光, 赵荣华, 蔡军社. 不同级别无核白葡萄果实外观与品质差异特征及分级[J]. 新疆农业科学, 2022, 59(3): 567-577. |
[15] | 丁新华, 王小武, 付开赟, 贾尊尊, 吐尔逊・阿合买提, 郭文超. 温度、相对湿度对亚洲玉米螟Ostrinia furnacalis (Guenée)越冬幼虫化蛹及羽化的影响[J]. 新疆农业科学, 2022, 59(11): 2668-2674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||