新疆农业科学 ›› 2024, Vol. 61 ›› Issue (3): 565-575.DOI: 10.6048/j.issn.1001-4330.2024.03.005
• 作物遗传育种·种质资源·分子遗传学·生理生化 • 上一篇 下一篇
党旭伟1(), 林馨园1, 贺正1, 陈燕1, 慈宝霞1, 马学花1, 郭晨荔2, 贺亚星1, 刘扬1,3(), 马富裕1,3()
收稿日期:
2023-07-15
出版日期:
2024-03-20
发布日期:
2024-04-19
通信作者:
刘扬(1989-),女,青海民和人,副教授,博士,硕士生导师,研究方向为作物水肥高效利用及精准栽培,(E-mail)作者简介:
党旭伟(1997-),男,新疆石河子人,硕士研究生,研究方向为作物水分高效利用与精准栽培,(E-mail)dxw202009@163.com
基金资助:
DANG Xuwei1(), LIN Xinyuan1, HE Zheng1, CHEN Yan1, CI Baoxia1, MA Xuehua1, GUO Chenli2, HE Yaxing1, LIU Yang1,3(), MA Fuyu1,3()
Received:
2023-07-15
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
LIU Yang(1989-),male,from Qinghai,associate professor,doctoral student,research field:efficient use of water and fertilizer and precision cultivation of crops,(E-mail)Supported by:
摘要:
【目的】 提高基于热红外遥感图像滴灌棉花冠层温度提取精度,为棉花水分状况精准监测提供技术支撑。【方法】 以不同水分处理的苗期、蕾期棉花为研究对象,利用无人机获取试验小区热红外遥感图像,使用便携式手持测温仪测量田间辐射校正板及水桶中的水温,对热红外影像进行温度校正。采用Otsu算法、Canny边缘检测算法对热红外遥感图像进行掩膜处理剔除土壤背景,通过波段运算提取棉花冠层温度,绘制棉花冠层温度频率直方图并对其进行优化。利用便携式手持测温仪同步测量棉花冠层温度,与提取的冠层温度进行一致性分析,验证热红外遥感图像提取棉花冠层温度的精度。【结果】 Canny边缘检测算法剔除土壤背景提取冠层图像准确率大于Otsu算法(91.90%>82.52%、92.76%>80.60%),剔除土壤背景效果最优。Otsu算法和Canny边缘检测算法剔除土壤背景后构建的冠层温度直方图均呈偏态分布,但Canny边缘检测算法剔除土壤背景后构建的冠层温度直方图形状比Otsu算法光滑,噪声少,并且Canny边缘检测算法2年冠层平均温度最低(29.95、30.54℃),与实测温度差值最小(2.78、3.43℃)。去除Canny边缘检测算法的温度直方图两端1%温度信息后,提取的冠层温度与实测温度相关性最高(2年试验r由0.88、0.93提高到了0.94、0.95),RMSE最低(2年RMSE由2.78、2.87℃下降到1.59、1.43℃)。【结论】 Canny边缘检测算法提高了无人机热红外遥感图像棉花冠层温度提取精度,且温度直方图两端1%温度优化后有助于提高棉花冠层温度提取精度。
中图分类号:
党旭伟, 林馨园, 贺正, 陈燕, 慈宝霞, 马学花, 郭晨荔, 贺亚星, 刘扬, 马富裕. 基于无人机热红外遥感图像提取滴灌棉花冠层温度及精度评价[J]. 新疆农业科学, 2024, 61(3): 565-575.
DANG Xuwei, LIN Xinyuan, HE Zheng, CHEN Yan, CI Baoxia, MA Xuehua, GUO Chenli, HE Yaxing, LIU Yang, MA Fuyu. Extraction and accuracy evaluation of cotton canopy temperature under drip irrigation based on uav thermal infrared remote sensing[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 565-575.
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 80.88 | 79.29 | 77.41 | 78.50 | 81.52 |
Canny算法 | 93.48 | 91.60 | 90.02 | 92.50 | 91.90 | |
召回率 Recall | Otsu算法 | 90.08 | 93.54 | 95.58 | 95.55 | 93.68 |
Canny算法 | 94.99 | 96.00 | 97.41 | 92.47 | 95.22 |
表1 不同提取方法的精度评价(2021)
Tab.1 Accuracy evaluation of different extraction methods(2021)(%)
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 80.88 | 79.29 | 77.41 | 78.50 | 81.52 |
Canny算法 | 93.48 | 91.60 | 90.02 | 92.50 | 91.90 | |
召回率 Recall | Otsu算法 | 90.08 | 93.54 | 95.58 | 95.55 | 93.68 |
Canny算法 | 94.99 | 96.00 | 97.41 | 92.47 | 95.22 |
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 78.52 | 80.89 | 81.32 | 81.67 | 80.60 |
Canny算法 | 93.14 | 96.11 | 90.21 | 91.59 | 92.76 | |
召回率 Recall | Otsu算法 | 90.95 | 91.40 | 89.35 | 89.96 | 90.42 |
Canny算法 | 93.52 | 96.78 | 90.31 | 91.32 | 92.98 |
表2 不同提取方法的精度评价(2022)
Tab.1 Accuracy evaluation of different extraction methods(2022)(%)
评价指标 Evaluating indicator | 算法 Algorithm | I1 | I2 | I3 | I4 | 均值 Average |
---|---|---|---|---|---|---|
准确率 Precision | Otsu算法 | 78.52 | 80.89 | 81.32 | 81.67 | 80.60 |
Canny算法 | 93.14 | 96.11 | 90.21 | 91.59 | 92.76 | |
召回率 Recall | Otsu算法 | 90.95 | 91.40 | 89.35 | 89.96 | 90.42 |
Canny算法 | 93.52 | 96.78 | 90.31 | 91.32 | 92.98 |
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 65.38 | 62.40 | 59.65 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 37.33 | 32.37 | 29.95 |
预测差值 Predicted difference | 11.81 | 5.85 | 3.43 |
表3 冠层温度特征值(2021)
Tab.3 Characteristic values of canopy temperature(2021)
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 65.38 | 62.40 | 59.65 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 37.33 | 32.37 | 29.95 |
预测差值 Predicted difference | 11.81 | 5.85 | 3.43 |
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 68.8 | 64.69 | 63.54 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 32.48 | 31.40 | 30.54 |
预测差值 Predicted difference | 4.72 | 3.64 | 2.78 |
表4 冠层温度特征值(2022)
Tab.4 Characteristic values of canopy temperature(2022)
冠层温度 Canopy temperature(℃) | 原始图像 Original image | Otsu算法 Otsu algorithm | Canny算法 Canny algorithm |
---|---|---|---|
最大值Max | 68.8 | 64.69 | 63.54 |
最小值Min | 11.34 | 11.34 | 11.34 |
平均值Mean | 32.48 | 31.40 | 30.54 |
预测差值 Predicted difference | 4.72 | 3.64 | 2.78 |
图8 图像提取温度与地面实测温度相关性(2021) 注:A:原始图像,B:Otsu算法,C:剔除Otsu算法直方图两端1%,D:Canny算法,E:剔除Canny算法两端1%,下同
Fig.8 Correlation analysis between image extraction temperature and ground measured temperature(2021) Note:A:original image,B:Otsu algorithm,C:removing 1% at both ends of Otsu algorithm histogram,D:Canny algorithm,E:removing 1% at both ends of Canny histogram,the same as below
[1] |
ZHAO B, Adama T, Ata-UI-Karim S T, et al. Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images[J]. Precision Agriculture, 2022, 23(3):748-767.
DOI |
[2] | 杨文攀, 李长春, 杨浩, 等. 基于无人机热红外与数码影像的玉米冠层温度监测[J]. 农业工程学报, 2018, 34(17):68-75,301. |
YANG Wenpan, LI Changchun, YANG Hao, et al. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery[J]. Transactions of the Chinese Society for Agricultural Engineering, 2018, 34(17):68-75,301. | |
[3] | 蔡甲冰, 许迪, 司南, 等. 基于冠层温度和土壤墒情的实时监测与灌溉决策系统[J]. 农业机械学报, 2015, 46(12):133-139. |
CAI Jiabing, XU Di, SI Nan, et al. Real-time monitoring system of crop canopy temperature and soil moisture for irrigation decision-making[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12):133-139. | |
[4] | 史长丽, 郭家选, 梅旭荣, 等. 夏玉米农田表面温度影响因素分析[J]. 中国农业科学, 2006, 39(1):48-56. |
SHI Changli, GUO Jiaxuan, MEI Xurong, et al. Analysis of the factors influencing surface temperature in summer maize field[J]. Scientia Agricultura Sinica, 2006, 39(1):48-56. | |
[5] |
Tanner C B. Plant temperatures[J]. Agronomy Journal, 1963, 55(2):210-211.
DOI URL |
[6] | 杨明欣, 高鹏, 陈文彬, 等. 基于机器学习的油青菜心水分胁迫研究[J]. 华南农业大学学报, 2021, 42(5):117-126. |
YANG Mingxin, GAO Peng, CHEN Wenbin, et al. Research of Brassica chinensis var.parachinensis under water stress based on machine learning[J]. Journal of South China Agricultural University, 2021, 42(5):117-126. | |
[7] | Bian J, Zhang Z T, Chen J Y, et al. Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery[J]. Remote Sensing, 2019, 11(3):267. |
[8] | 张宏鸣, 王佳佳, 韩文霆, 等. 基于热红外遥感影像的作物冠层温度提取[J]. 农业机械学报, 2019, 50(4):203-210. |
ZHANG Hongming, WANG Jiajia, HAN Wenting, et al. Crop canopy temperature extraction based on thermal infrared remote sensing images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4):203-210. | |
[9] |
冯子恒, 宋莉, 张少华, 等. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5):890-906.
DOI |
FENG Zhihong, SONG Li, ZHANG Shaohua, et al. Wheat powdery mildew monitoring based on information fusion of multi-spectral and thermal infrared images acquired with an unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2022, 55(5):890-906.
DOI |
|
[10] |
Zhou Z, Majeed Y, Diverres Naranjo G, et al. Assessment for crop water stress with infrared thermal imagery in precision agriculture:a review and future prospects for deep learning applications[J]. Computers and Electronics in Agriculture, 2021, 182:106019.
DOI URL |
[11] |
Hou M J, Tian F, Ortega-Farias S, et al. Estimation of crop transpiration and its scale effect based on ground and UAV thermal infrared remote sensing images[J]. European Journal of Agronomy, 2021, 131:126389.
DOI URL |
[12] | 夏清, 张振鑫, 王婷婷, 等. 基于改进Sobel算子的红外图像边缘提取算法[J]. 激光与红外, 2013, 43(10):1158-1161. |
XIA Qing, ZHANG Zhenxin, WANG Tingting, et al. Edge extraction algorithm of infrared thermal image based on improved sobel operator[J]. Laser & Infrared, 2013, 43(10):1158-1161. | |
[13] |
Liu M, Guan H O, Ma X D, et al. Recognition method of thermal infrared images of plant canopies based on the characteristic registration of heterogeneous images[J]. Computers and Electronics in Agriculture, 2020, 177:105678.
DOI URL |
[14] |
Zhang L Y, Niu Y X, Zhang H H, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring[J]. Frontiers in Plant Science, 2019, 10:1270.
DOI PMID |
[15] | 徐洪刚, 陈震, 程千, 等. 无人机热红外反演土壤含水率的方法[J]. 排灌机械工程学报, 2022, 40(11):1181-1188. |
XU Honggang, CHEN Zhen, CHENG Qian, et al. Inversion of soil moisture content based on UAV thermal infrared image[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(11):1181-1188. | |
[16] |
Sepúlveda-Reyes D, Ingram B, Bardeen M, et al. Selecting canopy zones and thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging[J]. Remote Sensing, 2016, 8(10):822.
DOI URL |
[17] | 张智韬, 边江, 韩文霆, 等. 剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断[J]. 农业机械学报, 2018, 49(10):250-260. |
ZHANG Zhitao, BIAN Jiang, HAN Wenting, et al. CUI T. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):250-260. | |
[18] | 张智韬, 许崇豪, 谭丞轩, 等. 覆盖度对无人机热红外遥感反演玉米土壤含水率的影响[J]. 农业机械学报, 2019, 50(8):213-225. |
ZHANG Zhitao, XU Chonghao, TAN Chengxuan, et al. Influence of coverage on soil moisture content of field corn inversed from thermal infrared remote sensing of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8):213-225. | |
[19] | 程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2):348-357. |
CHENG Lina, ZHONG Cairong, LI Xiaoyan, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2):348-357.
DOI URL |
|
[20] | 胡克满, 罗少龙, 胡海燕. 应用Canny算子的织物疵点检测改进算法[J]. 纺织学报, 2019, 40(1):153-158. |
HU Keman, LUO Shaolong, HU Haiyan. Improved algorithm for fabric defect detection based on Canny operator[J]. Journal of Textile Research, 2019, 40(1):153-158. | |
[21] | 陈玉婷, 刘洞波, 施怡澄, 等. 基于小波模极大值和自适应Canny算子的织物疵点检测算法[J]. 湖南工程学院学报(自然科学版), 2022, 32(2):54-58,65. |
CHEN Yuting, LIU Dongbo, SHI Yicheng, et al. Heredity analysis and cluster structure charateristics of agcu alloy at different cooling rates and pressures[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2022, 32(2):54-58,65. | |
[22] | 张智韬, 许崇豪, 谭丞轩, 等. 基于无人机热红外遥感的玉米地土壤含水率诊断方法[J]. 农业机械学报, 2020, 51(3):180-190. |
ZHANG Zhitao, XU Chonghao, TAN Chengxuan, et al. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV[J]. Journal of Hnnan Institute of Engineering(Natural Science Edition), 2020, 51(3):180-190. | |
[23] |
Ranjan A, Sinha R, Singla-Pareek S L, et al. Shaping the root system architecture in plants for adaptation to drought stress[J]. Physiologia Plantarum, 2022, 174(2):e13651.
DOI URL |
[24] | Lu S, Zhang T, Tian F. Evaluation of crop water status and vegetation dynamics for alternate partial root-zone drip irrigation of alfalfa:Observation with an unmanned aerial vehicle[J]. Frontiers in Environmental Science, 843. |
[25] |
Riveros-Burgos C, Ortega-Farías S, Morales-Salinas L, et al. Assessment of the clumped model to estimate olive orchard evapotranspiration using meteorological data and UAV-based thermal infrared imagery[J]. Irrigation Science, 2021, 39(1):63-80.
DOI |
[26] | 张智韬, 于广多, 吴天奎, 等. 基于无人机遥感影像的玉米冠层温度提取及作物水分胁迫监测[J]. 农业工程学报, 2021, 37(23):82-89. |
ZHANG Zhitao, YU Guangduo, WU Tiankui, et al. Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23):82-89. | |
[27] | 杨帅, 陈俊英, 周永财, 等. 无人机热红外遥感反演玉米根域土壤含水率方法研究[J]. 节水灌溉, 2021,(3):12-18. |
YANG Shuai, CHEN Junying, ZHOU Yongcai, et al. A Study on the method of UAV thermal infrared remote sensing to retrieve soil moisture content in corn root zone[J]. Water Saving Irrigation, 2021,(3):12-18. |
[1] | 董德誉, 程宇坤, 王睿, 雷钧杰, 王伟, 陈传信, 张永强, 耿洪伟. 基于无人机多光谱影像反演不同生育期小麦光合参数分析[J]. 新疆农业科学, 2023, 60(6): 1308-1318. |
[2] | 张栋海, 魏俊梅, 陈兵, 吉光鹏, 王凡, 牛蛉磊. 无人机播前喷施除草剂防除棉田杂草效果评价[J]. 新疆农业科学, 2022, 59(12): 3022-3029. |
[3] | 龙翔, 赵庆展, 王学文, 马永建, 江萍. 基于机载高光谱端元提取分析棉花生长期光谱变化[J]. 新疆农业科学, 2021, 58(7): 1207-1216. |
[4] | 李明仁, 芦阳, 李东燕, 张万罡, 马庆安, 贺正, 刘扬, 马富裕. 自动施肥系统开发与性能测试[J]. 新疆农业科学, 2021, 58(12): 2228-2235. |
[5] | 高新, 樊哲儒, 王重, 李剑峰, 张宏芝, 张跃强. 不同灌溉条件下一个春小麦重组自交系(RIL)冠层温度与产量性状的相关性[J]. 新疆农业科学, 2021, 58(11): 1961-1970. |
[6] | 朱晓锋, 徐兵强, 宋博, 熊金铭, 高冠荣, 闫晓静, 阿布都克尤木·卡德尔, 杨森. 植保无人机施药对核桃黑斑蚜和黄刺蛾的田间防效评价[J]. 新疆农业科学, 2021, 58(11): 2077-2083. |
[7] | 吕金城, 王振锡, 杨勇强, 曲延斌, 马琪瑶, 朱思明. 基于无人机影像的天山云杉林树高提取及蓄积量的反演[J]. 新疆农业科学, 2021, 58(10): 1838-1845. |
[8] | 颜安, 郭涛, 陈全家, 耿洪伟, 郭斌, 孙丰磊. 基于无人机影像的棉花株高预测[J]. 新疆农业科学, 2020, 57(8): 1493-1502. |
[9] | 杨勇强, 王振锡, 师玉霞, 连玲, 高亚利. 基于无人机影像的天山云杉林单木树冠信息提取[J]. 新疆农业科学, 2020, 57(8): 1484-1492. |
[10] | 魏青, 张宝忠, 魏征. 基于无人机多光谱影像的地物识别[J]. 新疆农业科学, 2020, 57(5): 932-939. |
[11] | 王志慧, 丁新华, 贾尊尊, 付开赟, 吐尔逊·阿合买提, 何江, 郭文超. 基于增效剂与杀虫剂协同作用的玉米螟超低量喷雾防治技术[J]. 新疆农业科学, 2020, 57(2): 311-318. |
[12] | 阮世进, 吕新, 刘阳, 任江静, 王艺晗, 印彩霞, 马露露, 张泽. 不同配肥模式下滴灌棉花氮素吸收利用规律[J]. 新疆农业科学, 2020, 57(10): 1802-1810. |
[13] | 吴金龙, 冯宏祖, 马小艳, 王兰, 张亚林, 武刚. 棉田棉蚜飞防药剂筛选及农药减量增效药效分析[J]. 新疆农业科学, 2020, 57(1): 167-172. |
[14] | 王雅佩, 王振锡, 刘梦婷, 李擎, 杨勇强. 基于无人机影像天山云杉林主伐迹地提取研究[J]. 新疆农业科学, 2019, 56(7): 1312-1324. |
[15] | 娄朝霞, 温浩军, 张斌, 辛芳, 韩小强, 付威. 多旋翼植保无人机棉花飞防作业效果[J]. 新疆农业科学, 2019, 56(3): 537-543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||