新疆农业科学 ›› 2024, Vol. 61 ›› Issue (3): 576-583.DOI: 10.6048/j.issn.1001-4330.2024.03.006
• 作物遗传育种·种质资源·分子遗传学·生理生化 • 上一篇 下一篇
陈沛1(), 鲍军秀1, 王斐1,2,3, 汤寿伍4, 刘海峰4(), 李鸿彬1,2,3,4()
收稿日期:
2023-08-03
出版日期:
2024-03-20
发布日期:
2024-04-19
通信作者:
李鸿彬(1980-),男,河南人,教授,博士,硕士生/博士生导师,研究方向为植物分子生物学,(E-mail)作者简介:
陈沛(1996-),男,四川人,硕士研究生,研究方向为植物分子生物学,(E-mail)554538275@qq.com
基金资助:
CHEN Pei1(), BAO Junxiu1, WANG Fei1,2,3, TANG Shouwu4, LIU Haifeng4(), LI Hongbin1,2,3,4()
Received:
2023-08-03
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
LI Hongbin(1980-),male,from Henan,professor,Ph.D.,doctoral supervisor,research field:plant molecular biology,(E-mail) Supported by:
摘要:
【目的】 优化超声提取绿色棉纤维中总黄酮工艺条件,为合理利用及鉴别天然绿色棉纤维提供依据。【方法】 以天然绿色棉纤维为原料,利用超声空化效应加速黄酮溶解于乙醇中,在单因素试验基础上,结合Box-Benhnken中心组合原理及响应面设计优化试验条件。【结果】 料液比为1∶50 g/mL时,总黄酮得率达到最大值,提取最适料液比为1∶50 g/mL,响应面试验中建立的模型的CV值=0.87%,影响绿色棉纤维总黄酮得率的顺序为提取时间>乙醇浓度>料液比,A料液比为1∶50 g/mL、B乙醇浓度50%、C提取时间50 min为最佳提取条件。【结论】 超声波法提取绿色棉纤维总黄酮的最佳条件参数为料液比1∶50 g/mL、乙醇浓度50%、提取时间50 min;获得平均总黄酮得率为5.25%。
中图分类号:
陈沛, 鲍军秀, 王斐, 汤寿伍, 刘海峰, 李鸿彬. 响应面优化超声提取绿色棉纤维总黄酮[J]. 新疆农业科学, 2024, 61(3): 576-583.
CHEN Pei, BAO Junxiu, WANG Fei, TANG Shouwu, LIU Haifeng, LI Hongbin. Extraction of total flavonoids from green cotton fiber by ultrasonic-based response surface optimization[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 576-583.
因素 Factor | 水平Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
料液比 Solid-liquid ratio(g/mL) | 1∶30 | 1∶40 | 1∶50 | 1∶60 | 1∶70 |
乙醇浓度 Ethanol concentration(%) | 30 | 40 | 50 | 60 | 70 |
提取功率比 Extraction power ratio(%) | 30 | 40 | 50 | 60 | 70 |
提取时间 Extraction time(min) | 30 | 40 | 50 | 60 | 70 |
表1 单因素试验设计
Tab.1 Single factor experimental design
因素 Factor | 水平Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
料液比 Solid-liquid ratio(g/mL) | 1∶30 | 1∶40 | 1∶50 | 1∶60 | 1∶70 |
乙醇浓度 Ethanol concentration(%) | 30 | 40 | 50 | 60 | 70 |
提取功率比 Extraction power ratio(%) | 30 | 40 | 50 | 60 | 70 |
提取时间 Extraction time(min) | 30 | 40 | 50 | 60 | 70 |
因素 Factor | 编码水平Coding level | ||
---|---|---|---|
-1 | 0 | 1 | |
A.料液比 A.Solid-liquid ratio(g/mL) | 1∶40 | 1∶50 | 1∶60 |
B.乙醇浓度 B.Ethanol concentration(%) | 40 | 50 | 60 |
C提取时间 C:Extraction time(min) | 40 | 50 | 60 |
表2 响应面试验因素及编码
Tab.2 Response surface test factors and coding
因素 Factor | 编码水平Coding level | ||
---|---|---|---|
-1 | 0 | 1 | |
A.料液比 A.Solid-liquid ratio(g/mL) | 1∶40 | 1∶50 | 1∶60 |
B.乙醇浓度 B.Ethanol concentration(%) | 40 | 50 | 60 |
C提取时间 C:Extraction time(min) | 40 | 50 | 60 |
试验序号 Experiment number | 因素代码及编码 Factor code and coding | 总黄酮 得率 Total flavonoid yield(%) | ||
---|---|---|---|---|
A.料液比 A.Solid- liquid ratio | B.乙醇浓度 B.Ethanol concentration | C.提取时间 C.Extraction time | ||
1 | 1 | 1 | 0 | 3.77 |
2 | 0 | 0 | 0 | 5.29 |
3 | 0 | 1 | -1 | 4.07 |
4 | -1 | 0 | -1 | 4.01 |
5 | 1 | -1 | 0 | 3.91 |
6 | 1 | 0 | -1 | 4.13 |
7 | 0 | 0 | 0 | 5.26 |
8 | 0 | -1 | -1 | 4.02 |
9 | 0 | 0 | 0 | 5.21 |
10 | 0 | 0 | 0 | 5.27 |
11 | 1 | 0 | 1 | 4.13 |
12 | 0 | -1 | 1 | 4.18 |
13 | -1 | -1 | 0 | 3.85 |
14 | 0 | 1 | 1 | 4.11 |
15 | 0 | 0 | 0 | 5.31 |
16 | -1 | 0 | 1 | 4.15 |
17 | -1 | 1 | 0 | 3.89 |
表3 响应面设计及结果
Tab.3 Experimental design and results for response surface analysis
试验序号 Experiment number | 因素代码及编码 Factor code and coding | 总黄酮 得率 Total flavonoid yield(%) | ||
---|---|---|---|---|
A.料液比 A.Solid- liquid ratio | B.乙醇浓度 B.Ethanol concentration | C.提取时间 C.Extraction time | ||
1 | 1 | 1 | 0 | 3.77 |
2 | 0 | 0 | 0 | 5.29 |
3 | 0 | 1 | -1 | 4.07 |
4 | -1 | 0 | -1 | 4.01 |
5 | 1 | -1 | 0 | 3.91 |
6 | 1 | 0 | -1 | 4.13 |
7 | 0 | 0 | 0 | 5.26 |
8 | 0 | -1 | -1 | 4.02 |
9 | 0 | 0 | 0 | 5.21 |
10 | 0 | 0 | 0 | 5.27 |
11 | 1 | 0 | 1 | 4.13 |
12 | 0 | -1 | 1 | 4.18 |
13 | -1 | -1 | 0 | 3.85 |
14 | 0 | 1 | 1 | 4.11 |
15 | 0 | 0 | 0 | 5.31 |
16 | -1 | 0 | 1 | 4.15 |
17 | -1 | 1 | 0 | 3.89 |
方差来源 Source of variation | 平方和 Quadratic sum | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P-value |
---|---|---|---|---|---|
模型Model | 5.71 | 9 | 0.63 | 438.03 | < 0.000 1 |
A | 2.00E-04 | 1 | 2.00E-04 | 0.14 | 0.7211 |
B | 1.80E-03 | 1 | 1.80E-03 | 1.24 | 0.301 6 |
C | 0.014 | 1 | 0.014 | 9.99 | 0.015 9 |
AB | 8.10E-03 | 1 | 8.10E-03 | 5.6 | 0.049 9 |
AC | 4.90E-03 | 1 | 4.90E-03 | 3.39 | 0.108 3 |
BC | 3.60E-03 | 1 | 3.60E-03 | 2.49 | 0.158 7 |
A2 | 2.07 | 1 | 2.07 | 1 431.79 | < 0.000 1 |
B2 | 2.13 | 1 | 2.13 | 1 472.91 | < 0.000 1 |
C2 | 0.9 | 1 | 0.9 | 619.68 | < 0.000 1 |
失拟项Lack of fit term | 4.45E-03 | 3 | 1.48E-03 | 1.04 | 0.464 |
误差项Error term | 5.68E-03 | 4 | 1.42E-03 | ||
总和Summation | 5.72 | 16 | |||
R2=0.998 2 | R2Adj=0.995 9 | CV=0.87% |
表4 方差分析
Tab.4 Analysis of variance for the fitted regression model
方差来源 Source of variation | 平方和 Quadratic sum | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P-value |
---|---|---|---|---|---|
模型Model | 5.71 | 9 | 0.63 | 438.03 | < 0.000 1 |
A | 2.00E-04 | 1 | 2.00E-04 | 0.14 | 0.7211 |
B | 1.80E-03 | 1 | 1.80E-03 | 1.24 | 0.301 6 |
C | 0.014 | 1 | 0.014 | 9.99 | 0.015 9 |
AB | 8.10E-03 | 1 | 8.10E-03 | 5.6 | 0.049 9 |
AC | 4.90E-03 | 1 | 4.90E-03 | 3.39 | 0.108 3 |
BC | 3.60E-03 | 1 | 3.60E-03 | 2.49 | 0.158 7 |
A2 | 2.07 | 1 | 2.07 | 1 431.79 | < 0.000 1 |
B2 | 2.13 | 1 | 2.13 | 1 472.91 | < 0.000 1 |
C2 | 0.9 | 1 | 0.9 | 619.68 | < 0.000 1 |
失拟项Lack of fit term | 4.45E-03 | 3 | 1.48E-03 | 1.04 | 0.464 |
误差项Error term | 5.68E-03 | 4 | 1.42E-03 | ||
总和Summation | 5.72 | 16 | |||
R2=0.998 2 | R2Adj=0.995 9 | CV=0.87% |
图2 料液比与乙醇浓度、料液比与提取时间、乙醇浓度与提取时间的交互作用 注:A:料液比与乙醇浓度交互作用的三维曲面图;B:料液比与乙醇浓度交互作用的等高线图;C:料液比与提取时间交互作用的三维曲面图;D:料液比与提取时间交互作用的等高线图;E:乙醇浓度与提取时间交互作用的三维曲面图;F:乙醇浓度与提取时间交互作用的等高线图
Fig.2 Interaction analysis between solid-liquid ratio and ethanol concentration,solid-liquid ratio and extraction time,and ethanol concentration and extraction time Note:A:Three-dimensional surface diagram of the interaction between solid-liquid ratio and ethanol concentration; B:Contour diagram of interaction between solid-liquid ratio and ethanol concentration; C:three-dimensional surface diagram of interaction between solid-liquid ratio and extraction time; D:Contour diagram of interaction between solid-liquid ratio and extraction time; E:three-dimensional surface diagram of the interaction between ethanol concentration and extraction time; F:Contour diagram of the interaction between ethanol concentration and extraction time
项目 Items | A.料液比 A.Solid- liquid ratio | B.乙醇 浓度 B.Ethanol concentr ation | C.提取 时间 C.Extra ction time | 总黄酮 得率 Total flavonoid yield(%) |
---|---|---|---|---|
编码值 Coding value | 0.000 | -0.011 | 0.047 | 5.269 |
最佳条件 Optimum condition | 1∶50 g/mL | 50% | 50 min | 5.25 |
表5 响应得到的最优条件及其响应值
Tab.5 Optimal response conditions and the response value
项目 Items | A.料液比 A.Solid- liquid ratio | B.乙醇 浓度 B.Ethanol concentr ation | C.提取 时间 C.Extra ction time | 总黄酮 得率 Total flavonoid yield(%) |
---|---|---|---|---|
编码值 Coding value | 0.000 | -0.011 | 0.047 | 5.269 |
最佳条件 Optimum condition | 1∶50 g/mL | 50% | 50 min | 5.25 |
[1] | 乔建民, 安兴伦. 国内外彩色棉研究利用现状及发展前景[J]. 石河子科技, 2001,(4):19-22. |
QIAO Jianmin, AN Xinglong. Research and utilization status and development prospect of colored cotton at home and abroad[J]. Shihezi Science and Technology, 2001,(4):19-22. | |
[2] | Tauber M M, Guebitz G M, Rehorek A. nDegradation of Azo Dyes by Laccase and Ultrasound Treatment[J]. Applied and Environmental Microbiology, 2005, 71(5):2,600-2,607. |
[3] | 刘芳. 天然彩色棉与染色棉鉴别方法究[D]. 上海: 东华大学, 2008. |
LIU Fang. Study on Identification Methods of Natural Colored Cotton and Dyed Cotton[D]. Shanghai: Donghua University, 2008. | |
[4] | 胡伯陶. 浅议天然彩色棉的色彩及其产品加工中的几个问题[J]. 棉纺织技术, 2002, 30(5):9-12. |
HU Baitao. A brief discussion on the color of natural colored cotton and some problems in product processing[J]. Cotton Textile Technology, 2002, 30(5):9-12. | |
[5] | 张培刚, 郑鸿雁, 昌友权, 等. 松针黄酮的体外抗氧化作用研究[J]. 食品科学, 2005, 26(9):506-508. |
ZHANG Peigang, ZHENG Hongyan, CHANG Youquan, et al. Study on antioxidant activity of pine needle flavone in vitro[J]. Food Science, 2005, 26(9):506-508. | |
[6] | 王雪, 乔博, 张健鑫, 等. 黄酮类化合物的应用研究进展[J]. 中国食品添加剂, 2020, 31(4):159-163. |
WANG Xue, QIAO Bo, ZHANG Jianxin, et al. Research progress on the application of flavonoids[J]. China Food Additives, 2020, 31(4):159-163. | |
[7] | 马厉芳, 吴春霞, 阿不都拉·阿巴斯. 超声波提取紫草叶中总黄酮的工艺研究[J]. 食品科学, 2007, 28(10):275-277. |
MA Lifang, WU Chunxia, Abudullah Abbas. Study on ultrasonic extraction of total flavonoids from leaves of comfrey chinensis[J]. Food Science, 2007, 28(10):275-277. | |
[8] | 王彦平, 汤高奇, 孙瑞琳, 等. 微波辅助提取葡萄皮渣总黄酮及其抗氧化性研究[J]. 食品研究与开发, 2017, 38(2):51-55. |
WANG Yanping, TANG Gaoqi, SUN Ruilin, et al. Microwave-assisted extraction of total flavonoids from grape peel residue and its antioxidant activity[J]. Food Research and Development, 2017, 38(2):51-55. | |
[9] | 张泽生, 董晓朦, 王田心, 等. 黄秋葵中多酚和黄酮提取工艺的研究[J]. 中国食品添加剂, 2017,(1):91-99. |
ZHANG Zesheng, DONG Xiaomeng, WANG Tianxin, et al. Study on extraction technology of polyphenols and flavonoids from okra[J]. China Food Additives, 2017,(1):91-99. | |
[10] | 王彦多, 刘春雨, 吕世洁, 等. 正交实验法优化发酵蜈蚣粉中总黄酮提取工艺[J]. 食品工业科技, 2017, 38(7):183-186,192. |
WANG Yanduo, LIU Chunyu, LYU Shijie, et al. Optimization of extraction technology of total flavonoids from fermented centipede powder by orthogonal experiment[J]. Science and Technology of Food Industry, 2017, 38(7):183-186,192. | |
[11] | 邹维娜, 王微, 徐启江, 等. 香茶子叶片总酚、总黄酮提取及抗氧化性研究[J]. 食品工业科技, 2017, 38(2):266-272. |
ZOU Weina, WANG Wei, XU Qijiang, et al. Extraction and antioxidant activity of total phenols and flavonoids from leaves of sweet tea seed[J]. Science and Technology of Food Industry, 2017, 38(2):266-272. | |
[12] | 闫萍, 孙海峰, 闫佳驹, 等. Box-Behnken响应面法优化翻白草总黄酮的提取工艺[J]. 中国药师, 2016, 19(12):2237-2240. |
YAN Ping, SUN Haifeng, YAN Jiaju, et al. Optimization of the extraction process of total flavonoids from rhizoma mollifolia by Box-Behnken response surface method[J]. Chinese Pharmacists, 2016, 19(12):2237-2240. | |
[13] | 张星, 刘振春, 董欣, 等. 黑豆异黄酮超声波微波辅助提取工艺的响应面优化[J]. 西北农林科技大学学报(自然科学版), 2017, 45(6):185-192. |
ZHANG Xing, LIU Zhenchun, DONG Xin, et al. Response surface optimization of ultrasonic microwave-assisted extraction of isoflavones from black bean[J]. Journal of Northwest A & F University(Natural Science Edition), 2017, 45(6):185-192. | |
[14] | 毕丽君, 李慧. 水芹中总黄酮类化合物最佳提取工艺的研究[J]. 食品科学, 1999, 20(12):35-37. |
BI Lijun, LI Hui. Study on the optimal extraction technology of total flavonoids from watercress[J]. Food Science, 1999, 20(12):35-37. | |
[15] | 刘春宇, 唐丽华, 顾振纶. 不同提取方法对山楂总黄酮含量的影响[J]. 苏州医学院学报, 1998, 18(12):16-17. |
LIU Chunyu, TANG Lihua, GU Zhenlong. Effects of different extraction methods on the content of total flavonoids in hawthorn[J]. Journal of Suzhou Medical College, 1998, 18(12):16-17. | |
[16] | 许海棠, 赵彦芝, 张金彦, 等. 响应面法提取瓶尔小草总黄酮及其抗氧化活性[J]. 食品科技, 2017, 42(2):215-220. |
XU Haitang, ZHAO Yanzhi, ZHANG Jinyan, et al. Response surface method for extraction of total flavonoids and their antioxidant activity[J]. Food Science and Technology, 2017, 42(2):215-220. | |
[17] | 汪泽, 崔丽虹, 唐冰, 等. 响应面法优化菠萝叶纤维多酚提取工艺[J]. 食品工业科技, 2017, 38(1):219-223. |
WANG Ze, CUI Lihong, TANg Bing, et al. Optimization of polyphenol extraction from pineapple leaves by response surface method[J]. Science and Technology of Food Industry, 2017, 38(1):219-223. | |
[18] | 邓梦琴, 林晓瑛, 张明, 等. 超声辅助提取菠萝蜜果皮黄酮工艺优化及体外抗氧化活性研究[J]. 食品工业科技, 2016, 37(24):288-293,296. |
DENG Mengqin, LIN Xiaoying, ZHANG Ming, et al. Study on extraction of flavonoids from Jackfruit by ultrasonic-assisted extraction and its antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2016, 37(24):288-293,296. | |
[19] | 张良晨, 王波, 石太渊, 等. 超声波辅助提取高粱壳黄酮色素工艺的研究[J]. 食品工业, 2016, 37(12):5-8. |
ZHANG Liangchen, WANG Bo, SHI Taiyuan, et al. Study on ultrasonic assisted extraction of flavonoid pigment from sorghum husk[J]. The Food Industry, 2016, 37(12):5-8. | |
[20] | 王耀辉, 王景雪, 邱现创, 等. 响应面法优化白灵菇多糖超声辅助提取工艺及其体外抗氧化性[J]. 食品工业科技, 2017, 38(10):247-252. |
WANG Yaohui, WANG Jingxue, QIU Xianchuang, et al. Optimization of ultrasonic-assisted extraction process and its antioxidant activity in vitro by response surface method[J]. Science and Technology of Food Industry, 2017, 38(10):247-252. | |
[21] |
张玉香, 屈慧鸽, 杨润亚, 等. 响应面法优化蓝莓叶黄酮的微波提取工艺[J]. 食品科学, 2010, 31(16):33-37.
DOI |
ZHANG Yuxiang, QU Huige, YANG Runya, et al. Optimization of microwave extraction of flavonoids from blueberry leaves by response surface method[J]. Food Science, 2010, 31(16):33-37.
DOI |
|
[22] | 庞庭才, 钟秋平, 胡上英, 等. 响应面分析法优化碱蓬黄酮提取工艺[J]. 中国酿造, 2016, 35(11):140-144. |
PANG Tingcai, ZHONG Qiuping, HU Shangying, et al. Optimization of extraction process of flavone from radix alpinae by response surface analysis[J]. China Brewing, 2016, 35(11):140-144. | |
[23] | 谢郁峰, 陈日佳, 严春艳. 响应面法优化番石榴叶总黄酮的超声提取工艺[J]. 广东药学院学报, 2014, 30(4):417-421. |
XIE Yufeng, CHEN Rijia, YAN Chunyan. Optimization of ultrasonic extraction process of total flavonoids from guava leaves by response surface method[J]. Journal of Guangdong Pharmaceutical University, 2014, 30(4):417-421. | |
[24] | 刘宁, 王冉, 李健, 等. 超声波细胞粉碎法提取东北红松松针总黄酮[J]. 中国食品添加剂, 2018,(4):118-127. |
LIU Ning, WANG Ran, LI Jian, et al. Extraction of total flavonoids from pine needles by ultrasonic cell crushing[J]. China Food Additives, 2018,(4):118-127. |
[1] | 姚军, 秦勇, 郑贺云, 张翠环, 再吐娜·买买提, 汪志伟, 耿新丽. 无花果叶提取液复合保鲜膜的研制及其在甜瓜保鲜上的应用[J]. 新疆农业科学, 2024, 61(1): 118-126. |
[2] | 李硕, 王娟, 尼格尔热依·亚迪卡尔, 朱金芳, 冯作山, 帕尔哈提·艾尼瓦尔. 不同品种杏果实不同发育期功能性成分变化规律[J]. 新疆农业科学, 2023, 60(5): 1200-1207. |
[3] | 赵经华, 杨庭瑞, 张恒, 虎胆·吐马尔白, 马亮, 陈凯丽. 基于响应面法的多砾石砂土滴灌春小麦水肥条件优选[J]. 新疆农业科学, 2023, 60(1): 43-51. |
[4] | 金科旭, 戴小华, 谷虹霏, 束佳敏, 王天琪, 海婷玉. 大孔树脂纯化野山杏总黄酮工艺[J]. 新疆农业科学, 2022, 59(4): 900-907. |
[5] | 曹林青, 詹发强, 杨蓉, 侯新强, 包慧芳, 侯敏, 王宁, 龙宣杞. 一株拮抗葡萄灰霉病的嗜线虫致病杆菌发酵条件优化[J]. 新疆农业科学, 2022, 59(11): 2688-2695. |
[6] | 王仙, 聂石辉, 向莉, 张金汕, 李鹏, 方伏荣. 干旱胁迫对中亚大麦农艺性状、产量和品质的影响[J]. 新疆农业科学, 2022, 59(1): 86-94. |
[7] | 雷静, 毕金峰, 廉苇佳, 陈雅, 韩琛. 响应面法优化葡萄干脆果脉动压差闪蒸干燥工艺[J]. 新疆农业科学, 2021, 58(8): 1529-1539. |
[8] | 雷静, 陈雅, 廉苇佳, 韩琛, 阿依加马丽·加帕尔, 任红松. 应用响应面法优化桑椹果叶酒发酵工艺[J]. 新疆农业科学, 2021, 58(6): 1113-1123. |
[9] | 靳元元, 马生军, 徐万里, 张军, 耿阳, 吴文平, 王雪双. 不同产地黄芪活性成分与硒含量比较分析[J]. 新疆农业科学, 2021, 58(5): 873-881. |
[10] | 王庆惠, 杨嘉鹏, 杨忠强. 基于Box-Behnken响应面法优化杏子干燥工艺[J]. 新疆农业科学, 2021, 58(11): 2103-2110. |
[11] | 陈雅, 雷静, 廉苇佳, 韩琛, 吴斌, 任红松. 无核白葡萄酒澄清剂的筛选与优化[J]. 新疆农业科学, 2020, 57(7): 1305-1313. |
[12] | 谢玉清, 代金平, 陈竞, 王志方, 古丽努尔·艾合买提, 杨新平, 张慧涛, 王小武, 冯蕾. 一株无柄灵芝菌(G.resinaceum)LZ02高产漆酶液体培养基的响应面法优化[J]. 新疆农业科学, 2020, 57(5): 869-876. |
[13] | 王旭辉, 徐鑫, 王卉, 叶凯, 涂振东, 晁群芳. 新疆一枝蒿多糖的提取、纯化及其结构分析[J]. 新疆农业科学, 2018, 55(6): 1085-1097. |
[14] | 谢景龙,李晓斌,赵芳,王晨晨,杨开伦. 响应面法优化产二氢大豆苷元菌株发酵培养基[J]. 新疆农业科学, 2018, 55(1): 143-155. |
[15] | 王旭辉, 叶凯, 徐鑫, 山其米克, 王卉, 李冠, 邓宇. 耐盐纤维素降解菌的筛选、鉴定及其配比优化的研究[J]. 新疆农业科学, 2017, 54(12): 2282-2292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||