新疆农业科学 ›› 2024, Vol. 61 ›› Issue (4): 781-790.DOI: 10.6048/j.issn.1001-4330.2024.04.001
贾东海1, 宋贤明1,2, 顾元国1, 李强1(), 曾幼玲2, 苗昊翠1, 郭美丽3, 侯献飞1(
)
收稿日期:
2023-09-03
出版日期:
2024-04-20
发布日期:
2024-05-31
通信作者:
侯献飞(1989- ),男,甘肃庆阳人,助理研究员,硕士,研究方向为油料作物遗传育种,(E-mail)hou544805196@163.com;作者简介:
贾东海(1980- ),男,新疆人,研究员,研究方向为油料作物育种与栽培,(E-mail)545507831@qq.com
基金资助:
JIA Donghia1, SONG Xianming1,2, GU Yuanguo1, LI Qiang1(), ZENG Youling2, MIAO Haocui1, GUO Meili3, HOU Xianfei1(
)
Received:
2023-09-03
Published:
2024-04-20
Online:
2024-05-31
Correspondence author:
HOU Xianfei (1989-), male, from Qingyang, Gansu, assistant researcher, research area: oil crop genetic breeding male, (E-mail)hou544805196@163.com;Supported by:
摘要:
【目的】研究化肥减量配施微生物菌肥对膜下滴灌红花生长发育及产量的影响。【方法】2020~2021年在新疆塔城地区裕民县设置2年定位施肥试验,采用裂区试验设计,设6个处理:(1)对照CK:不施肥;(2)CF:复合肥20 kg/667m2;(3)OF:微生物菌肥20 kg/667m2;(4)CF+25M:化肥15 kg/667m2(化肥减量25%)+微生物菌肥5 kg/667m2;(5)CF+37.5M:化肥12.5 kg/667m2(化肥减量37.5%)+微生物菌肥7.5 kg/667m2;(6)CF+50M:化肥10 kg/667m2(化肥减量50%)+微生物菌肥10 kg/667m2。研究不同施肥处理对红花农艺性状、干物质积累与分配和产量形成的影响。【结果】处理CF+25M和CF+37.5M有利于红花的生长发育,可以显著增加红花株高、分枝数、叶片数和叶绿素含量等,并能促进红花干物质积累,调节干物质分配,协调改善红花产量构成因素,从而增加红花花丝和籽粒产量。其中以CF+37.5M处理下红花综合性状表现最优,其单株果球数、千粒重、花丝产量和籽粒产量分别比CF处理显著提高了87.85%、12.29%、11.42%和15.78%,同时株高、根长和叶绿素含量亦均达到最高水平。【结论】化肥减量配施微生物菌肥CF+37.5M:化肥12.5 kg/667m2(化肥减量37.5%)+微生物菌肥7.5 kg/667m2最优,能有效降低化肥施用量,促进红花生长发育,从而提高肥料利用率。
中图分类号:
贾东海, 宋贤明, 顾元国, 李强, 曾幼玲, 苗昊翠, 郭美丽, 侯献飞. 化肥减量配施微生物菌肥对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 781-790.
JIA Donghia, SONG Xianming, GU Yuanguo, LI Qiang, ZENG Youling, MIAO Haocui, GUO Meili, HOU Xianfei. Effect of reducing chemical fertilizer and applying microbial one on the growth and yield of Carthamus tinctorius L. under mulch drip irrigation[J]. Xinjiang Agricultural Sciences, 2024, 61(4): 781-790.
生育时期 Growth period | 处理 Treatments | 株高Plant height(cm) | 茎粗Stem thick(cm) | 根长Root length(cm) | 叶片数Leaves number(个) | 分枝数Branchs number(个) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | ||
伸长期 Elongation stage | CK | 3.2±1.27ab | 12.8±1.51c | 4.4±0.77b | 5.6±0.89a | 7.9±2.75a | 12.3±3.11a | 9.3±1.52a | 8.3±0.58a | / | / |
CF | 2.2±1.39b | 13.4±1.01bc | 5.6±0.4a | 6.3±0.3a | 8.3±1.24a | 9.8±2.33a | 10.7±1.53a | 8±1a | / | / | |
OF | 6.1±1.54a | 13.3±0.65c | 4.9±0.69ab | 6±0.71a | 8.6±1.43a | 11.5±2.35a | 9.7±1.15a | 8±1a | / | / | |
CF+25M | 3.1±0.65ab | 15.7±0.87a | 5.3±0.99ab | 6.4±0.27a | 9.9±1.06a | 12.5±1.73a | 9.7±1.53a | 8.7±1.15a | / | / | |
CF+37.5M | 3.7±0.91ab | 15.1±0.42ab | 5.6±0.3a | 5.9±0.37a | 7.6±1.63a | 11.1±0.75a | 11±1a | 8.3±2.08a | / | / | |
CF+50M | 4.6±0.68ab | 15.7±1.17a | 6±0.73a | 6.5±0.4a | 9.4±1.68a | 12±1.76a | 10.7±1.53a | 8±1a | / | / | |
分枝期 Branching stage | CK | 19.1±0.83b | 35.6±1.4c | 6.7±1.3b | 7.3±0.66b | 10.1±0.96a | 14.9±1.71b | 18.3±1.31a | 19.3±1.15c | / | / |
CF | 21.4±0.91ab | 42.8±1.93ab | 8.1±0.33a | 8.1±0.81ab | 12.5±1.67a | 16.6±0.9a | 19.7±1.52a | 22.7±0.58ab | / | / | |
OF | 20.3±0.98ab | 40.4±2.48b | 8.2±1.3a | 7.5±1.55b | 12.3±0.76a | 16.2±0.12a | 16±1b | 20.7±1.15c | / | / | |
CF+25M | 21.1±0.95ab | 44±1.9a | 7.5±0.62a | 8.4±0.43ab | 11.8±1.66a | 15.9±1.65a | 18±1.36a | 24.3±0.58a | / | / | |
CF+37.5M | 25.7±1.69a | 48.5±1.49a | 8.9±0.71a | 9.1±0.54a | 9.4±1.65b | 17.3±2.57a | 19±1a | 24.7±0.58a | / | / | |
CF+50M | 23.1±1.17a | 42.9±1.82ab | 7.4±0.76a | 7.6±0.44b | 10.5±1.44a | 17.4±1.05a | 19.3±1.53a | 24.7±1.15a | / | / | |
现蕾期 Budding stage | CK | 55.6±3.84b | 70.8±2.2c | 7.8±0.2c | 8.5±0.32b | 15.2±1.2b | 17.5±1bc | 67.7±2.15c | 101±11.2c | 6.5±1c | 10.3±1.1b |
CF | 65.9±3.09ab | 74.6±1.08ab | 8.9±0.62b | 9.9±0.35a | 18.9±1.17ab | 18.6±1.96abc | 90.3±3.65ab | 112.7±6.56bc | 7±2.65bc | 10±2.06b | |
OF | 63.6±2.75ab | 78.8±1.5a | 11.4±1.32a | 9.6±0.52a | 18.5±1.1ab | 20.5±1.1ab | 91±3.38ab | 152±11.35ab | 8±2abc | 11.7±1.53a | |
CF+25M | 65.9±3.95ab | 74.4±1.97bc | 9.2±0.2b | 9.5±1.12a | 18.7±1.97ab | 19.5±1.7ab | 89±3.05ab | 149±7.17ab | 9.7±1.53ab | 13.3±1a | |
CF+37.5M | 70±2.36a | 77.7±2.8a | 11.6±1.15a | 10.2±0.53a | 20.1±2.35a | 21.7±2.08a | 109.7±3.76a | 183±10.24a | 11±2.65a | 12.7±1.06a | |
CF+50M | 57.1±3.03b | 72.3±2c | 9.3±0.52b | 9.3±0.91a | 15.8±1.37b | 16.8±1.63c | 98.3±3.13ab | 138±9.51b | 9.7±1.53ab | 9.7±1.08b | |
开花期 Flowering stage | CK | 65.1±2.4b | 71±1.05b | 9.9±0.72b | 9.1±0.43b | 17.1±2.39a | 18.2±2.96a | 100.3±9.66c | 158.3±9.68c | 10.7±0.89b | 8.3±0.58c |
CF | 70.2±3.77a | 76.3±3.62ab | 13.7±2.29a | 11.5±0.94a | 19.4±2.95a | 21.1±5.5a | 133±8.53bc | 179±10.03b | 10.7±2b | 9.3±1.15b | |
OF | 73.2±3.37a | 79.9±2.72a | 12.8±2.56a | 10.5±0.68a | 18.6±2.84a | 20.4±2.36a | 170.7±5.08b | 173.3±11.65b | 12.3±1.65ab | 9.3±0.58b | |
CF+25M | 71.5±2.79a | 76.7±1.55ab | 12±1.49ab | 10.2±0.63a | 18.9±1.57a | 20.7±2.61a | 195±10.59a | 257±9.58a | 15±0.58a | 13.3±1.15a | |
CF+37.5M | 73.5±4.64a | 81.6±4.26a | 11.9±0.71ab | 10.8±0.99a | 20.8±3.27a | 22.5±1.69a | 226.7±8.26a | 259±12.13a | 14±1.61a | 15±2.65a | |
CF+50M | 70.6±2.26a | 75.3±3.51ab | 10.9±0.96ab | 9.6±1.21ab | 18.1±1.77a | 18.9±2.6a | 175.7±8.17ab | 248±10.15a | 10.3±1.31b | 14.3±2.31a |
表1 不同处理下红花主要农艺性状变化
Tab.1 Changes of agronomic traits of Carthamus tinctorius L. under different treatments
生育时期 Growth period | 处理 Treatments | 株高Plant height(cm) | 茎粗Stem thick(cm) | 根长Root length(cm) | 叶片数Leaves number(个) | 分枝数Branchs number(个) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | 2020年 | 2021年 | ||
伸长期 Elongation stage | CK | 3.2±1.27ab | 12.8±1.51c | 4.4±0.77b | 5.6±0.89a | 7.9±2.75a | 12.3±3.11a | 9.3±1.52a | 8.3±0.58a | / | / |
CF | 2.2±1.39b | 13.4±1.01bc | 5.6±0.4a | 6.3±0.3a | 8.3±1.24a | 9.8±2.33a | 10.7±1.53a | 8±1a | / | / | |
OF | 6.1±1.54a | 13.3±0.65c | 4.9±0.69ab | 6±0.71a | 8.6±1.43a | 11.5±2.35a | 9.7±1.15a | 8±1a | / | / | |
CF+25M | 3.1±0.65ab | 15.7±0.87a | 5.3±0.99ab | 6.4±0.27a | 9.9±1.06a | 12.5±1.73a | 9.7±1.53a | 8.7±1.15a | / | / | |
CF+37.5M | 3.7±0.91ab | 15.1±0.42ab | 5.6±0.3a | 5.9±0.37a | 7.6±1.63a | 11.1±0.75a | 11±1a | 8.3±2.08a | / | / | |
CF+50M | 4.6±0.68ab | 15.7±1.17a | 6±0.73a | 6.5±0.4a | 9.4±1.68a | 12±1.76a | 10.7±1.53a | 8±1a | / | / | |
分枝期 Branching stage | CK | 19.1±0.83b | 35.6±1.4c | 6.7±1.3b | 7.3±0.66b | 10.1±0.96a | 14.9±1.71b | 18.3±1.31a | 19.3±1.15c | / | / |
CF | 21.4±0.91ab | 42.8±1.93ab | 8.1±0.33a | 8.1±0.81ab | 12.5±1.67a | 16.6±0.9a | 19.7±1.52a | 22.7±0.58ab | / | / | |
OF | 20.3±0.98ab | 40.4±2.48b | 8.2±1.3a | 7.5±1.55b | 12.3±0.76a | 16.2±0.12a | 16±1b | 20.7±1.15c | / | / | |
CF+25M | 21.1±0.95ab | 44±1.9a | 7.5±0.62a | 8.4±0.43ab | 11.8±1.66a | 15.9±1.65a | 18±1.36a | 24.3±0.58a | / | / | |
CF+37.5M | 25.7±1.69a | 48.5±1.49a | 8.9±0.71a | 9.1±0.54a | 9.4±1.65b | 17.3±2.57a | 19±1a | 24.7±0.58a | / | / | |
CF+50M | 23.1±1.17a | 42.9±1.82ab | 7.4±0.76a | 7.6±0.44b | 10.5±1.44a | 17.4±1.05a | 19.3±1.53a | 24.7±1.15a | / | / | |
现蕾期 Budding stage | CK | 55.6±3.84b | 70.8±2.2c | 7.8±0.2c | 8.5±0.32b | 15.2±1.2b | 17.5±1bc | 67.7±2.15c | 101±11.2c | 6.5±1c | 10.3±1.1b |
CF | 65.9±3.09ab | 74.6±1.08ab | 8.9±0.62b | 9.9±0.35a | 18.9±1.17ab | 18.6±1.96abc | 90.3±3.65ab | 112.7±6.56bc | 7±2.65bc | 10±2.06b | |
OF | 63.6±2.75ab | 78.8±1.5a | 11.4±1.32a | 9.6±0.52a | 18.5±1.1ab | 20.5±1.1ab | 91±3.38ab | 152±11.35ab | 8±2abc | 11.7±1.53a | |
CF+25M | 65.9±3.95ab | 74.4±1.97bc | 9.2±0.2b | 9.5±1.12a | 18.7±1.97ab | 19.5±1.7ab | 89±3.05ab | 149±7.17ab | 9.7±1.53ab | 13.3±1a | |
CF+37.5M | 70±2.36a | 77.7±2.8a | 11.6±1.15a | 10.2±0.53a | 20.1±2.35a | 21.7±2.08a | 109.7±3.76a | 183±10.24a | 11±2.65a | 12.7±1.06a | |
CF+50M | 57.1±3.03b | 72.3±2c | 9.3±0.52b | 9.3±0.91a | 15.8±1.37b | 16.8±1.63c | 98.3±3.13ab | 138±9.51b | 9.7±1.53ab | 9.7±1.08b | |
开花期 Flowering stage | CK | 65.1±2.4b | 71±1.05b | 9.9±0.72b | 9.1±0.43b | 17.1±2.39a | 18.2±2.96a | 100.3±9.66c | 158.3±9.68c | 10.7±0.89b | 8.3±0.58c |
CF | 70.2±3.77a | 76.3±3.62ab | 13.7±2.29a | 11.5±0.94a | 19.4±2.95a | 21.1±5.5a | 133±8.53bc | 179±10.03b | 10.7±2b | 9.3±1.15b | |
OF | 73.2±3.37a | 79.9±2.72a | 12.8±2.56a | 10.5±0.68a | 18.6±2.84a | 20.4±2.36a | 170.7±5.08b | 173.3±11.65b | 12.3±1.65ab | 9.3±0.58b | |
CF+25M | 71.5±2.79a | 76.7±1.55ab | 12±1.49ab | 10.2±0.63a | 18.9±1.57a | 20.7±2.61a | 195±10.59a | 257±9.58a | 15±0.58a | 13.3±1.15a | |
CF+37.5M | 73.5±4.64a | 81.6±4.26a | 11.9±0.71ab | 10.8±0.99a | 20.8±3.27a | 22.5±1.69a | 226.7±8.26a | 259±12.13a | 14±1.61a | 15±2.65a | |
CF+50M | 70.6±2.26a | 75.3±3.51ab | 10.9±0.96ab | 9.6±1.21ab | 18.1±1.77a | 18.9±2.6a | 175.7±8.17ab | 248±10.15a | 10.3±1.31b | 14.3±2.31a |
图1 不同施肥处理下红花叶绿素含量变化 注:ES、BP、BS和FS分别代表红花伸长期、分枝期、现蕾期和开花期
Fig.1 Relative chlorophyll content of Carthamus tinctorius L. under different treatments Note: ES, BP, BS and FS were elongation stage, branching period, squaring stage and flowering stage, respectively of Carthamus tinctorius L.
图2 不同处理下红花总干物质积累量和积累速率变化 注:SS、ES、BP、BS和FS分别表示红花播种期、伸长期、分枝期、现蕾期和开花期
Fig.2 Changes of total dry matter accumulation and accumulation rate of Carthamus tinctorius L. under different treatments Note: SS, ES, BP, BS and FS were sowing stage, elongation stage, branching period, squaring stage and flowering stage, respectively of Carthamus tinctorius L.
图3 不同处理下红花地上部分和地下部分干物质分配变化
Fig.3 Changes of dry matter distribution in aboveground and underground parts of Carthamus tinctorius L. under different treatments
图4 不同处理下红花产量及其构成因素的变化 注:A、B和C分别为2020~2021年红花产量构成因素、花丝产量和籽粒产量
Fig.4 Yield and yield components of Carthamus tinctorius L. under different treatments Note:A, B and C were the yield components, filament yield and grain yield from 2020 to 2021, respectively of Carthamus tinctorius L.
图5 红花产量及构成因素相关性 注:*、**和***分别表示在P<0.05、P<0.01和P<0.001水平上显著相关。FBNPP、SNPP、TSW、FY和GY分别代表红花单株果球数、每果粒数、千粒重、花丝产量和籽粒产量
Fig.5 Correlation analysis of Carthamus tinctorius L. yield and composition factors Note: *, ** and *** represents significant correlation at P < 0.05, P < 0.01 and P < 0.001, respectively. FBNPP, SNPP, TSW, FY and GY represents fruit ball number per plant, seed number per pod, thousand seed weight, filament yield and grain yield, respectively
[1] | 杨滨键, 尚杰, 于法稳. 农业面源污染防治的难点、问题及对策[J]. 中国生态农业学报(中英文), 2019, 27(2): 236-245. |
YANG Binjian, SHANG Jie, YU Fawen. Difficulty, problems and countermeasures of agricultural non-point sources pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 236-245. | |
[2] | 刘钦普. 中国化肥施用强度及环境安全阈值时空变化[J]. 农业工程学报, 2017, 33(6): 214-221. |
LIU Qinpu. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 214-221. | |
[3] | 汪粮荐. 中国化学肥料的发展与其农业应用分析[J]. 山西农经, 2018,(10): 103, 108. |
WANG Liangjian. Development of chemical fertilizer and its agricultural application in China[J]. Shanxi Agricultural Economy, 2018,(10): 103, 108. | |
[4] | 汤明尧, 沈重阳, 傅国海, 等. 新疆种植业化肥施用情况调查与分析[J]. 农业工程, 2021, 11(5): 132-136. |
TANG Mingyao, SHEN Chongyang, FU Guohai, et al. Investigation and analysis of fertilizer application of planting industry in Xinjiang[J]. Agricultural Engineering, 2021, 11(5): 132-136. | |
[5] | 刘钦普, 濮励杰. 中国与主要发达国家化肥施用配置及效率对比分析[J]. 中国土壤与肥料, 2021,(6): 328-335. |
LIU Qinpu, PU Lijie. Comparation of fertilizer allocation and integrated efficiency between China and major developed countries[J]. Soil and Fertilizer Sciences in China, 2021,(6): 328-335. | |
[6] |
贺怀杰, 王振华, 郑旭荣, 等. 水氮耦合对膜下滴灌棉花生长及产量的影响[J]. 新疆农业科学, 2017, 54(11): 1983-1989.
DOI |
HE Huaijie, WANG Zhenhua, ZHENG Xurong, et al. Effects of water-nitrogen coupling on growth and yield of cotton under mulch drip irrigation[J]. Xinjiang Agricultural Sciences, 2017, 54(11): 1983-1989.
DOI |
|
[7] | 马征, 崔荣宗, 贾德, 等. 氮磷钾平衡施用对大葱产量、养分吸收及利用的影响[J]. 中国土壤与肥料, 2019,(3): 109-114. |
MA Zheng, CUI Rongzong, JIA De, et al. Effects of N, P and K balanced fertilization on Welsh onion yield, nutrient uptake and utilization[J]. Soil and Fertilizer Sciences in China, 2019,(3): 109-114. | |
[8] | 马静. 生物有机肥对不同土壤生物活性和油菜产量品质的影响[D]. 太古: 山西农业大学, 2017. |
MA Jing. Effect of bioorganic fertilizer application on biological activity and yield and quality of rape in different soils[D]. Taigu: Shanxi Agricultural University, 2017. | |
[9] | 聂文翰. 基于秸秆堆肥和水肥一体化的化肥减量技术研究[D]. 重庆: 西南大学, 2017. |
NIE Wenhan. Study on Fertilizer Reduction Technique Based on Straw Composts and Fertigation System[D]. Chongqing: Southwest University, 2017. | |
[10] | 吕凤莲, 侯苗苗, 张弘弢, 等. 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究[J]. 植物营养与肥料学报, 2018, 24(1): 22-32. |
LYU Fenglian, HOU Miaomiao, ZHANG Hongtao, et al. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22-32. | |
[11] |
赵婧文, 张庆伟, 李政, 等. 膜下滴灌施用生物有机肥对土壤盐分及棉花产量的影响[J]. 中国农业科技导报, 2019, 21(3): 102-108.
DOI |
ZHAO Jingwen, ZHANG Qingwei, LI Zheng, et al. Effects of drip irrigation under plastic film and bio-organic fertilizer on soil salinity and cotton yield[J]. Journal of Agricultural Science and Technology, 2019, 21(3): 102-108.
DOI |
|
[12] | 候丽丽, 王伟, 崔新菊, 等. 化肥减量配施有机肥对小麦生长、光合和产量的影响[J]. 麦类作物学报, 2021, 41(4): 475-482. |
HOU Lili, WANG Wei, CUI Xinju, et al. Effect of chemical fertilizer reduction combined with organic fertilizer application on growth, photosynthesis and yield of wheat[J]. Journal of Triticeae Crops, 2021, 41(4): 475-482. | |
[13] | Ibukunoluwa Moyin-Jesu E. Use of different organic fertilizers on soil fertility improvement, growth and head yield parameters of cabbage (Brassica Oleraceae L)[J]. International Journal of Recycling of Organic Waste in Agriculture, 2015, 4(4): 291-298. |
[14] |
李菊, 高程斐, 马宁, 等. 化肥减量配施生物有机肥对松花菜养分吸收及产量的影响[J]. 华北农学报, 2021, 36(6): 153-162.
DOI |
LI Ju, GAO Chengfei, MA Ning, et al. Effects of chemical fertilizer reduction combined with biological organic fertilizer on nutrient absorption and yield of cauliflower[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(6): 153-162. | |
[15] | 熊廷浩, 资涛, 张嫒, 等. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响[J]. 作物杂志, 2021,(3): 133-139. |
XIONG Tinghao, ZI Tao, ZHANG Ai, et al. Effects of different organic fertilizer dosages on nutrient utilization and yield of rapeseed under chemical fertilizer reduction[J]. Crops, 2021,(3): 133-139. | |
[16] | 田满栀. 有机肥替代化肥对棉花生长及产量的影响[J]. 中国农技推广, 2022, 38(1): 63-65. |
TIAN Manzhi. Effect of replacing chemical fertilizer with organic fertilizer on cotton growth and yield[J]. China Agricultural Technology Extension, 2022, 38(1): 63-65. | |
[17] | 蒋静, 张霞, 马晓丽, 等. 施肥对新疆红花莲座期生长及N、P化学计量的影响[J]. 石河子大学学报(自然科学版), 2014, 32(3): 272-278. |
JIANG Jing, ZHANG Xia, MA Xiaoli, et al. Effects of fertilization on rosette stage growth and N, P ecological stoichiometry of Carthamus tinctorius L[J]. Journal of Shihezi University (Natural Science), 2014, 32(3): 272-278. | |
[18] | 叶祝弘. 化肥减量配施有机肥对水稻生长及稻田气体调节功能的影响[D]. 沈阳农业大学, 2018. |
YE Zhuhong. Effect of chemical fertilizer reduction combined organic fertilizer on rice growth and gas regulation value in paddy field[D]. Shenyang: Shenyang Agricultural University, 2018. | |
[19] | 陈云梅, 肖厚军, 赵欢, 等. 商品有机肥替代化肥对春玉米生长、产量及土壤肥力的影响[J]. 西南农业学报, 2022, 35(1): 148-152. |
CHEN Yunmei, XIAO Houjun, ZHAO Huan, et al. Effects of commercial organic fertilizer as substitution of chemical fertilizer on growth, yield of spring maize and soil fertility[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 148-152. | |
[20] |
卢合全, 唐薇, 罗振, 等. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
DOI |
LU Hequan, TANG Wei, LUO Zhen, et al. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton[J]. Acta Agronomica Sinica, 2021, 47(12): 2511-2521.
DOI |
|
[21] | 吕巨智, 范继征, 谢小东, 等. 不同耕作方式对玉米生长发育、产量及品质的影响[J]. 山东农业科学, 2021, 53(7): 34-38. |
LYU Juzhi, FAN Jizheng, XIE Xiaodong, et al. Effects of different tillage managements on growth, yield and quality of maize[J]. Shandong Agricultural Sciences, 2021, 53(7): 34-38. | |
[22] | Geng Y H, Cao G J, Wang L C, et al. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution[J]. PLoS One, 2019, 14(7): e0219512. |
[23] |
冯克云, 王宁, 南宏宇, 等. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
DOI |
FENG Keyun, WANG Ning, NAN Hongyu, et al. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton[J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
DOI |
|
[24] |
徐令旗, 郭晓红, 兰宇辰, 等. 不同有机肥对旱直播水稻干物质积累和产量的影响[J]. 华北农学报, 2021, 36(2): 188-195.
DOI |
XU Lingqi, GUO Xiaohong, LAN Yuchen, et al. Effects of different organic fertilizers on dry matter accumulation and yield of dry direct-seeding rice[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 188-195. | |
[25] | 何浩, 张宇彤, 危常州, 等. 不同有机替代减肥方式对玉米生长及土壤肥力的影响[J]. 水土保持学报, 2019, 33(5): 281-287. |
HE Hao, ZHANG Yutong, WEI Changzhou, et al. Effects of different organic substitution reducing fertilizer patterns on maize growth and soil fertility[J]. Journal of Soil and Water Conservation, 2019, 33(5): 281-287. | |
[26] |
王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响[J]. 应用生态学报, 2020, 31(1): 173-181.
DOI |
WANG Ning, NAN Hongyu, FENG Keyun. Effects of reduced chemical fertilizer with organic fertilizer application on soil microbial biomass, enzyme activity and cotton yield[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 173-181.
DOI |
[1] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[2] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[3] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[4] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[5] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[6] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[7] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[8] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[9] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[10] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[11] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[12] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[13] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
[14] | 李锁丞, 柳延涛, 董红业, 孙振博, 李紫薇, 张春媛, 王开勇, 李强, 杨明凤. 不同施钾量对滴灌花生光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1926-1936. |
[15] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||