新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1077-1084.DOI: 10.6048/j.issn.1001-4330.2024.05.005
鞠乐1,2(), 齐军仓1(), 牛银亭2, 石培春1, 宋瑞娇1, 宋凌宇1, 阴志刚2, 陈培育2, 强学兰3
收稿日期:
2023-10-25
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
齐军仓( 1971-),男,陕西宝鸡人,教授,硕士生/博士生导师,研究方向为大麦遗传育种与栽培,(E-mail)shzqjc@qq.com作者简介:
鞠乐(1987-),女,河南邓州人,助理研究员,研究方向为杂粮遗传育种与栽培,(E-mail)695112004@qq.com
基金资助:
JU Le1,2(), QI Juncang1(), NIU Yinting2, SHI Peichun1, SONG Ruijiao1, SONG Lingyu1, YIN Zhigang2, CHEN Peiyu2, QIANG Xuelan3
Received:
2023-10-25
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
QI Juncang ( 1971-), male, from Baoji, Shaanxi, professor, doctoral supervisor,research direction: Genetic breeding and cultivation techniques of barley, (E-mail)shzqjc@qq.com
Supported by:
摘要:
【目的】挖掘与分析大麦苗期抗旱相关基因,为研究大麦分子抗旱机制和选育抗旱大麦品种提供理论支撑。【方法】以啤酒大麦品种新啤6号为材料,应用转录组测序RNA-seq技术对干旱胁迫前后大麦苗期倒二叶叶片进行转录组测序,并采用实时荧光定量 RT-PCR 方法进行功能基因验证。【结果】(1)干旱胁迫前后新啤6号倒二叶中3 835个差异表达基因,主要为编码ABC转运蛋白、核糖体蛋白、转录因子、脱水素、过氧化物酶、蛋白质磷酸酶等的基因。(2)DEG主要富集在淀粉和蔗糖代谢、转运蛋白、植物激素信号转导、伴侣和折叠催化剂、氨基糖和核苷酸糖的代谢、苯丙氨酸代谢、牛磺酸和次牛磺酸代谢、过氧化物酶体等途径。【结论】大麦干旱胁迫前后基因表达差异显著(其中上调基因1 592个,下调基因2 243个)。
中图分类号:
鞠乐, 齐军仓, 牛银亭, 石培春, 宋瑞娇, 宋凌宇, 阴志刚, 陈培育, 强学兰. 基于RNA-seq的大麦苗期抗旱相关基因的挖掘与分析[J]. 新疆农业科学, 2024, 61(5): 1077-1084.
JU Le, QI Juncang, NIU Yinting, SHI Peichun, SONG Ruijiao, SONG Lingyu, YIN Zhigang, CHEN Peiyu, QIANG Xuelan. RNA-seq-based mining and analysis of drought-related genes in barley seedlings[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1077-1084.
基因ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|
HG0227420.1 | TCACTGTTGTATCGGTTTTGTATCA | GTAGTAGCTCTTGCCTCTTAATCATTT |
HG0720280.1 | AGGAGAGGCTACTACGGGATGT | TTAAAGTCGACGTTGTTGAGGG |
HG0464400.1 | GTACGTCACGGGGAGGGC | ATCACACATACACATCGGCTAAAGT |
HG0330150.1 | GGGATTTCTTGGCTAAGGTGTC | CCGTGATGATGTGAGTGGTTG |
HG0333810.1 | CTGTCTACCGTGTTATCGCTCG | AACTTTTGCCCTCATTTTTCATT |
表1 RT-qPCR 引物序列
Tab.1 RT-qPCR primer sequence
基因ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|
HG0227420.1 | TCACTGTTGTATCGGTTTTGTATCA | GTAGTAGCTCTTGCCTCTTAATCATTT |
HG0720280.1 | AGGAGAGGCTACTACGGGATGT | TTAAAGTCGACGTTGTTGAGGG |
HG0464400.1 | GTACGTCACGGGGAGGGC | ATCACACATACACATCGGCTAAAGT |
HG0330150.1 | GGGATTTCTTGGCTAAGGTGTC | CCGTGATGATGTGAGTGGTTG |
HG0333810.1 | CTGTCTACCGTGTTATCGCTCG | AACTTTTGCCCTCATTTTTCATT |
基因编号 Gene ID | 基因注释 Gene annotation | 差异倍数 logFC | 显著性 P value |
---|---|---|---|
HORVU.MOREX.r3.1HG0008130 | 可能为肉桂醇脱氢酶5 | 8.53 | 1.96E-07 |
HORVU.MOREX.r3.1HG0041720 | 极长链醛脱碳酶GL1-5 | 9.96 | 5.34E-07 |
HORVU.MOREX.r3.1HG0082800 | 可能为异天冬氨酸肽酶/ l -天冬酰胺酶2 | 9.40 | 0.0013 |
HORVU.MOREX.r3.2HG0139380 | 异柠檬酸裂合酶 | 10.33 | 6.10E-07 |
HORVU.MOREX.r3.2HG0170930 | 22.0 kDa热休克蛋白 | 11.13 | 3.99E-16 |
HORVU.MOREX.r3.2HG0195920 | 泛素- 40s核糖体蛋白S27a-1 | 9.35 | 1.03E-08 |
HORVU.MOREX.r3.3HG0286930 | BURP结构域蛋白RD22 | 8.54 | 8.95E-07 |
HORVU.MOREX.r3.3HG0286980 | 可能的WRKY转录因子56 | 10.06 | 1.94E-05 |
HORVU.MOREX.r3.3HG0325680 | 丝氨酸脱羧酶1 | 11.65 | 7.56E-13 |
HORVU.MOREX.r3.4HG0386330 | ABC转运蛋白G家族成员5 | 11.16 | 7.68E-07 |
HORVU.MOREX.r3.5HG0481950 | 叶绿体低分子质量早期光诱导蛋白HV90 | 9.06 | 5.10E-12 |
HORVU.MOREX.r3.6HG0622760 | 脱水素DHN4 | 14.24 | 8.48E-07 |
HORVU.MOREX.r3.6HG0622770 | 脱水素DHN3 | 15.66 | 2.39E-11 |
HORVU.MOREX.r3.7HG0666580 | 叶绿体ATP依赖性锌金属蛋白酶FTSH 6 | 13.64 | 1.32E-07 |
HORVU.MOREX.r3.1HG0010600 | 色氨酸脱羧酶1 | -12.52 | 1.53E-06 |
HORVU.MOREX.r3.2HG0112630 | 过氧化物酶1 | -10.23 | 4.46E-08 |
HORVU.MOREX.r3.2HG0112720 | 过氧化物酶2 | -10.62 | 9.72E-22 |
HORVU.MOREX.r3.2HG0117260 | 蛋白质HEADING DATE 3A | -11.38 | 2.44E-16 |
HORVU.MOREX.r3.3HG0227850 | AP2/ERF和B3结构域蛋白 | -10.82 | 7.05E-19 |
HORVU.MOREX.r3.3HG0276230 | 磷脂酶A1-II 3 | -10.78 | 6.26E-23 |
HORVU.MOREX.r3.3HG0318390 | LRR受体激酶BAK1 | -8.15 | 1.43E-16 |
HORVU.MOREX.r3.4HG0399940 | 转氨酶ALD1同源物 | -8.56 | 9.99E-06 |
HORVU.MOREX.r3.4HG0408430 | 乙烯应答转录因子ERF096 | -9.72 | 1.10E-10 |
HORVU.MOREX.r3.5HG0479070 | 转录因子MYB20 | -10.31 | 4.43E-22 |
HORVU.MOREX.r3.5HG0514340 | 转录因子JUNGBRUNNEN 1 | -10.74 | 2.81E-16 |
HORVU.MOREX.r3.5HG0528610 | 细胞数目调控因子10 | -8.29 | 1.66E-08 |
HORVU.MOREX.r3.7HG0659450 | 羟基肉桂酰转移酶4 | -11.43 | 1.35E-13 |
表2 部分大麦苗期响应干旱胁迫DEG
Tab.2 Part of DEGs response to drought stress at seedling stage of Barley under drought stress
基因编号 Gene ID | 基因注释 Gene annotation | 差异倍数 logFC | 显著性 P value |
---|---|---|---|
HORVU.MOREX.r3.1HG0008130 | 可能为肉桂醇脱氢酶5 | 8.53 | 1.96E-07 |
HORVU.MOREX.r3.1HG0041720 | 极长链醛脱碳酶GL1-5 | 9.96 | 5.34E-07 |
HORVU.MOREX.r3.1HG0082800 | 可能为异天冬氨酸肽酶/ l -天冬酰胺酶2 | 9.40 | 0.0013 |
HORVU.MOREX.r3.2HG0139380 | 异柠檬酸裂合酶 | 10.33 | 6.10E-07 |
HORVU.MOREX.r3.2HG0170930 | 22.0 kDa热休克蛋白 | 11.13 | 3.99E-16 |
HORVU.MOREX.r3.2HG0195920 | 泛素- 40s核糖体蛋白S27a-1 | 9.35 | 1.03E-08 |
HORVU.MOREX.r3.3HG0286930 | BURP结构域蛋白RD22 | 8.54 | 8.95E-07 |
HORVU.MOREX.r3.3HG0286980 | 可能的WRKY转录因子56 | 10.06 | 1.94E-05 |
HORVU.MOREX.r3.3HG0325680 | 丝氨酸脱羧酶1 | 11.65 | 7.56E-13 |
HORVU.MOREX.r3.4HG0386330 | ABC转运蛋白G家族成员5 | 11.16 | 7.68E-07 |
HORVU.MOREX.r3.5HG0481950 | 叶绿体低分子质量早期光诱导蛋白HV90 | 9.06 | 5.10E-12 |
HORVU.MOREX.r3.6HG0622760 | 脱水素DHN4 | 14.24 | 8.48E-07 |
HORVU.MOREX.r3.6HG0622770 | 脱水素DHN3 | 15.66 | 2.39E-11 |
HORVU.MOREX.r3.7HG0666580 | 叶绿体ATP依赖性锌金属蛋白酶FTSH 6 | 13.64 | 1.32E-07 |
HORVU.MOREX.r3.1HG0010600 | 色氨酸脱羧酶1 | -12.52 | 1.53E-06 |
HORVU.MOREX.r3.2HG0112630 | 过氧化物酶1 | -10.23 | 4.46E-08 |
HORVU.MOREX.r3.2HG0112720 | 过氧化物酶2 | -10.62 | 9.72E-22 |
HORVU.MOREX.r3.2HG0117260 | 蛋白质HEADING DATE 3A | -11.38 | 2.44E-16 |
HORVU.MOREX.r3.3HG0227850 | AP2/ERF和B3结构域蛋白 | -10.82 | 7.05E-19 |
HORVU.MOREX.r3.3HG0276230 | 磷脂酶A1-II 3 | -10.78 | 6.26E-23 |
HORVU.MOREX.r3.3HG0318390 | LRR受体激酶BAK1 | -8.15 | 1.43E-16 |
HORVU.MOREX.r3.4HG0399940 | 转氨酶ALD1同源物 | -8.56 | 9.99E-06 |
HORVU.MOREX.r3.4HG0408430 | 乙烯应答转录因子ERF096 | -9.72 | 1.10E-10 |
HORVU.MOREX.r3.5HG0479070 | 转录因子MYB20 | -10.31 | 4.43E-22 |
HORVU.MOREX.r3.5HG0514340 | 转录因子JUNGBRUNNEN 1 | -10.74 | 2.81E-16 |
HORVU.MOREX.r3.5HG0528610 | 细胞数目调控因子10 | -8.29 | 1.66E-08 |
HORVU.MOREX.r3.7HG0659450 | 羟基肉桂酰转移酶4 | -11.43 | 1.35E-13 |
GO编号 GO ID | GO分类 GO term | 矫正后的P值 P.adjust | GO编号 GO ID | GO分类 GO term | 矫正后的P值 P.adjust |
---|---|---|---|---|---|
GO:0010200 | 对几丁质的反应 | 4.56E-10 | GO:0071484 | 细胞对光照强度的反应 | 9.56E-06 |
GO:0009451 | RNA修饰 | 2.27E-08 | GO:0006952 | 防御反应 | 9.56E-06 |
GO:0009607 | 对生物刺激的反应 | 8.66E-07 | GO:0006950 | 对胁迫的反应 | 1.76E-05 |
GO:1901700 | 对含氧化合物的反应 | 8.66E-07 | GO:0010243 | 对有机氮化合物的反应 | 2.90E-05 |
GO:0043207 | 对外部生物刺激的反应 | 8.66E-07 | GO:0009644 | 对高光照强度的反应 | 4.32E-05 |
GO:0010117 | 光保护 | 8.66E-07 | GO:0010030 | 种子萌发的正向调节 | 5.33E-05 |
GO:0051707 | 对其他生物的反应 | 8.66E-07 | GO:0090305 | 核酸磷酸二酯键水解 | 5.33E-05 |
GO:0070141 | 对紫外线A的反应 | 1.33E-06 | GO:0042493 | 对药物的反应 | 6.22E-05 |
GO:0071492 | 细胞对紫外线A的反应 | 1.33E-06 | GO:0001101 | 对酸化学物质的反应 | 6.22E-05 |
GO:0004519 | 内切酶活性 | 1.33E-06 | GO:0010380 | 叶绿素生物合成过程的调节 | 6.22E-05 |
GO:0098542 | 对其他生物的防御反应 | 1.47E-06 | GO:1901463 | 四吡咯生物合成过程的调控 | 6.22E-05 |
GO:0042742 | 对细菌的防御反应 | 3.52E-06 | GO:0071490 | 细胞对远红外线的反应 | 8.41E-05 |
GO:0004518 | 核酸酶活性 | 3.72E-06 | GO:0016788 | 水解酶活性,作用于酯键 | 9.30E-05 |
GO:0071491 | 细胞对红光的反应 | 4.76E-06 | GO:0009620 | 对真菌的反应 | 9.74E-05 |
GO:0071486 | 细胞对高光照强度的反应 | 4.76E-06 | GO:0009295 | 类核 | 9.77E-05 |
表3 干旱胁迫下大麦DEG的GO富集
Tab.3 GO enrichment analysis of DEGs in Barley under drought stress
GO编号 GO ID | GO分类 GO term | 矫正后的P值 P.adjust | GO编号 GO ID | GO分类 GO term | 矫正后的P值 P.adjust |
---|---|---|---|---|---|
GO:0010200 | 对几丁质的反应 | 4.56E-10 | GO:0071484 | 细胞对光照强度的反应 | 9.56E-06 |
GO:0009451 | RNA修饰 | 2.27E-08 | GO:0006952 | 防御反应 | 9.56E-06 |
GO:0009607 | 对生物刺激的反应 | 8.66E-07 | GO:0006950 | 对胁迫的反应 | 1.76E-05 |
GO:1901700 | 对含氧化合物的反应 | 8.66E-07 | GO:0010243 | 对有机氮化合物的反应 | 2.90E-05 |
GO:0043207 | 对外部生物刺激的反应 | 8.66E-07 | GO:0009644 | 对高光照强度的反应 | 4.32E-05 |
GO:0010117 | 光保护 | 8.66E-07 | GO:0010030 | 种子萌发的正向调节 | 5.33E-05 |
GO:0051707 | 对其他生物的反应 | 8.66E-07 | GO:0090305 | 核酸磷酸二酯键水解 | 5.33E-05 |
GO:0070141 | 对紫外线A的反应 | 1.33E-06 | GO:0042493 | 对药物的反应 | 6.22E-05 |
GO:0071492 | 细胞对紫外线A的反应 | 1.33E-06 | GO:0001101 | 对酸化学物质的反应 | 6.22E-05 |
GO:0004519 | 内切酶活性 | 1.33E-06 | GO:0010380 | 叶绿素生物合成过程的调节 | 6.22E-05 |
GO:0098542 | 对其他生物的防御反应 | 1.47E-06 | GO:1901463 | 四吡咯生物合成过程的调控 | 6.22E-05 |
GO:0042742 | 对细菌的防御反应 | 3.52E-06 | GO:0071490 | 细胞对远红外线的反应 | 8.41E-05 |
GO:0004518 | 核酸酶活性 | 3.72E-06 | GO:0016788 | 水解酶活性,作用于酯键 | 9.30E-05 |
GO:0071491 | 细胞对红光的反应 | 4.76E-06 | GO:0009620 | 对真菌的反应 | 9.74E-05 |
GO:0071486 | 细胞对高光照强度的反应 | 4.76E-06 | GO:0009295 | 类核 | 9.77E-05 |
基因编号Gene ID | 相对表达量Relative expression |
---|---|
HG0227420.1 | 4.71 |
HG0720280.1 | 8.62 |
HG0464400.1 | 7.73 |
HG0330150.1 | 4.50 |
HG0333810.1 | 3.63 |
表4 实时荧光定量PCR结果
Tab.4 Confirmation of the transcriptomic profiles of selected genes by RT-qPCR
基因编号Gene ID | 相对表达量Relative expression |
---|---|
HG0227420.1 | 4.71 |
HG0720280.1 | 8.62 |
HG0464400.1 | 7.73 |
HG0330150.1 | 4.50 |
HG0333810.1 | 3.63 |
[1] | Wassmann R, Jagadish S V K, Sumfleth K, et al. Chapter 3 regional vulnerability of climate change impacts on Asian rice production and scope for adaptation[M]. Advances in Agronomy. Amsterdam: Elsevier, 2009: 91-133. |
[2] |
Salekdeh G H, Reynolds M, Bennett J, et al. Conceptual framework for drought phenotyping during molecular breeding[J]. Trends in Plant Science, 2009, 14(9): 488-496.
DOI PMID |
[3] | 郝晶, 姚立蓉, 汪军成, 等. 不同基因型大麦苗期对干旱胁迫的响应及HvPIPs基因表达特征分析[J]. 干旱地区农业研究, 2023, 41(4): 41-50, 60. |
HAO Jing, YAO Lirong, WANG Juncheng, et al. Response of different genotypes of barley to drought stress at seedling stage and analysis of HvPIPs gene expression characteristics[J]. Agricultural Research in the Arid Areas, 2023, 41(4): 41-50, 60. | |
[4] |
代小冬, 朱灿灿, 宋迎辉, 等. 基于RNA-seq的谷子萌芽期抗旱相关基因挖掘与分析[J]. 核农学报, 2021, 35(8): 1761-1770.
DOI |
DAI Xiaodong, ZHU Cancan, SONG Yinghui, et al. Identification and analysis of drought related genes in foxtail millet (Setaria italica L.) at germination stage based on transcriptome sequencing[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1761-1770.
DOI |
|
[5] | 邓贵仲, 代欢, 程田田, 等. 不同粒色大麦萌发期抗旱性鉴定[J/OL]. 分子植物育种, 2023-12-11. |
DENG Guizhong, DAI Huan, CHENG Tiantian, et al. Identification of drought resistance during germination in barley with different grain colors[J/OL]. Molecular Plant Breeding, 2023-12-11. | |
[6] |
鞠乐, 齐军仓, 陈培育, 等. 干旱胁迫对大麦种子萌发、幼苗生长及生理特性的影响[J]. 新疆农业科学, 2023, 60(8): 1879-1886.
DOI |
JU Le, QI Juncang, CHEN Peiyu, et al. Effects of drought stress on seed germination, seedling growth and physiological characteristics of barley[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1879-1886.
DOI |
|
[7] |
杜欢, 马彤彤, 郭帅, 等. 大麦近等基因系苗期根系形态及叶片渗透调节物质对PEG胁迫的响应[J]. 中国农业科学, 2017, 50(13): 2423-2432.
DOI |
DU Huan, MA Tongtong, GUO Shuai, et al. Response of root morphology and leaf osmoregulation substances of seedling in barley genotypes with different heights to PEG stress[J]. Scientia Agricultura Sinica, 2017, 50(13): 2423-2432.
DOI |
|
[8] | 惠宏杉, 林立昊, 齐军仓, 等. 干旱胁迫对大麦幼苗根系的影响[J]. 麦类作物学报, 2015, 35(9): 1291-1297. |
HUI Hongshan, LIN Lihao, QI Juncang, et al. Effect of drought stress on the roots of barley seedling[J]. Journal of Triticeae Crops, 2015, 35(9): 1291-1297. | |
[9] | 赵东宾, 张海禄, 王仙, 等. 大麦叶片表皮蜡质组分和含量及其与抗旱性的关系[J]. 新疆农业科学, 2017, 54(1): 43-50. |
ZHAO Dongbin, ZHANG Hailu, WANG Xian, et al. Relationship between epicuticular wax components and its content and drought resistance in barley leaf[J]. Xinjiang Agricultural Sciences, 2017, 54(1): 43-50. | |
[10] |
王仙, 聂石辉, 向莉, 等. 干旱胁迫对中亚大麦农艺性状、产量和品质的影响[J]. 新疆农业科学, 2022, 59(1): 86-94.
DOI |
WANG Xian, NIE Shihui, XIANG Li, et al. Effects of drought stress on agronomic characters, yield and quality of barley from central Asia[J]. Xinjiang Agricultural Sciences, 2022, 59(1): 86-94.
DOI |
|
[11] | 聂石辉, 王仙, 向莉, 等. 干旱胁迫对中亚大麦农艺性状的影响及其相关基因定位[J]. 麦类作物学报, 2022, 42(1): 59-67. |
NIE Shihui, WANG Xian, XIANG Li, et al. Responses to drought stress and gene mapping of related agronomic traits of central Asian barley[J]. Journal of Triticeae Crops, 2022, 42(1): 59-67. | |
[12] | 鞠乐, 齐军仓, 贺雪, 等. 大麦种子萌发期抗旱性鉴定指标的筛选及抗旱性评价[J]. 新疆农业科学, 2016, 53(11): 2008-2014. |
JU Le, QI Juncang, HE Xue, et al. Screening drought resistance identification index and drought resistance evaluation in barley during seed germination period[J]. Xinjiang Agricultural Sciences, 2016, 53(11): 2008-2014. | |
[13] |
任毅, 王仙, 张金汕, 等. 中亚大麦品种萌发期抗旱性筛选与鉴定[J]. 新疆农业科学, 2019, 56(5): 882-889.
DOI |
REN Yi, WANG Xian, ZHANG Jinshan, et al. Screening and identification of drought resistance of central Asian barley varieties at germination stage[J]. Xinjiang Agricultural Sciences, 2019, 56(5): 882-889.
DOI |
|
[14] | 汪军成, 孟亚雄, 徐先良, 等. 大麦苗期抗旱性鉴定及评价[J]. 干旱地区农业研究, 2013, 31(4): 135-143. |
WANG Juncheng, MENG Yaxiong, XU Xianliang, et al. Identification and assessment on drought-resistance of Hordeum vulgare L.at seedling stage[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 135-143. | |
[15] |
徐银萍, 潘永东, 刘强德, 等. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
DOI |
XU Yinping, PAN Yongdong, LIU Qiangde, et al. Drought resistance identification and drought resistance indexes screening of barley resources at mature period[J]. Acta Agronomica Sinica, 2020, 46(3): 448-461.
DOI |
|
[16] |
周元成, 曹永立, 王镇, 等. 不同大麦品种抗旱性鉴定指标的筛选与评价[J]. 中国农业科技导报, 2022, 24(2): 86-92.
DOI |
ZHOU Yuancheng, CAO Yongli, WANG Zhen, et al. Screening and evaluation of drought resistance indexes in different barley varieties[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 86-92.
DOI |
|
[17] |
张振超, 姚悦梅, 毛忠良, 等. 基于高通量测序的青花菜早期发育小孢子转录组分析与基因功能注释[J]. 核农学报, 2018, 32(5): 848-855.
DOI |
ZHANG Zhenchao, YAO Yuemei, MAO Zhongliang, et al. Transcriptome analysis and gene function annotation of early developmental broccoli microspores based on high-throughput sequencing technology[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(5): 848-855.
DOI |
|
[18] |
潘教文, 李臻, 王庆国, 等. NaCl处理谷子萌发期种子的转录组学分析[J]. 中国农业科学, 2019, 52(22): 3964-3975.
DOI |
PAN Jiaowen, LI Zhen, WANG Qingguo, et al. Transcriptomics analysis of NaCl response in foxtail millet (Setaria italica L.) seeds at germination stage[J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975. | |
[19] | 贺小彦. 干旱胁迫下西藏野生大麦根毛生长调控基因HvEXPB7的分离、克隆和功能鉴定[D]. 杭州: 浙江大学, 2015. |
HE Xiaoyan. Isolation, Cloning and Functional Identification of HVEPB 7, a Root Hair Growth Regulation Gene of Wild Barley in Tibet under Drought Stress[D]. Hangzhou: Zhejiang University, 2015. | |
[20] | 宋士伟, 焦德志, 陈旭, 等. 野大麦对干旱胁迫的生理响应与转录组分析[J]. 干旱区研究, 2019, 36(4): 909-915. |
SONG Shiwei, JIAO Dezhi, CHEN Xu, et al. Physiological response and transcriptome of Hordeum brevisubulatum to drought stress[J]. Arid Zone Research, 2019, 36(4): 909-915. | |
[21] | 张学雷. 进化谷野生大麦耐旱基因型差异及其机理研究[D]. 杭州: 浙江大学, 2017. |
ZHANG Xuelei. Genotypic difference of drought tolerance in wild barley in Evolutionary Valley and its mechanism[D]. Hangzhou: Zhejiang University, 2017. | |
[22] | Yoshimura K, Masuda A, Kuwano M, et al. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits[J]. Plant & Cell Physiology, 2008, 49(2): 226-241. |
[23] | Gao C Q, Wang Y C, Liu G F, et al. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress[J]. Plant Molecular Biology Reporter, 2010, 28(1): 77-89. |
[24] | 张瑞杰, 王喆, 连卜颖, 等. 谷子ABC转运蛋白基因与抗旱关系的研究[J]. 山西农业大学学报(自然科学版), 2018, 38(1): 11-15. |
ZHANG Ruijie, WANG Zhe, LIAN Bu Ying, et al. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(1): 11-15. | |
[25] |
Kretzschmar T, Burla B, Lee Y, et al. Functions of ABC transporters in plants[J]. Essays in Biochemistry, 2011, 50(1): 145-160.
DOI PMID |
[26] |
Yang S J, Vanderbeld B, Wan J X, et al. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops[J]. Molecular Plant, 2010, 3(3): 469-490.
DOI PMID |
[27] |
Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling[J]. Trends in Plant Science, 2004, 9(5): 236-243.
DOI PMID |
[28] | Zhang X, Lu S C, Jiang C H, et al. RcLEA,a late embryogenesis abundant protein gene isolated from Rosa chinensis,confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses[J]. Plant Molecular Biology, 2014, 85(4): 333-347. |
[1] | 何婉洁, 孟涵颖, 支梦婷, 陈静. 双斑长跗萤叶甲雌虫、雄虫触角转录组及差异表达基因分析[J]. 新疆农业科学, 2024, 61(4): 984-995. |
[2] | 张伟, 杨国慧, 于辉. 2,4-表油菜素内酯对干旱胁迫下西瓜幼苗生长及相关基因表达的影响[J]. 新疆农业科学, 2024, 61(3): 615-622. |
[3] | 沈煜洋, 王仙, 陈利, 郭小玲, 苗雨, 董裕生, 陈智军, 方伏荣, 向莉, 高海峰. 新疆荒漠绿洲区大麦田阔叶杂草化学防除药效评价[J]. 新疆农业科学, 2024, 61(1): 184-189. |
[4] | 户金鸽, 白世践, 陈光, 蔡军社. 不同地面覆盖方式下新郁葡萄果皮黄酮转录组和代谢组联合分析[J]. 新疆农业科学, 2024, 61(1): 63-78. |
[5] | 王晓雨, 王小平, 史文宇, 刘美艳, 马健, 郭云鹏, 宋瑞欣, 王清涛. 拔节期冬小麦光合特性、干物质积累和产量对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(9): 2163-2172. |
[6] | 向莉, 王仙, 董裕生, 郭小玲, 方伏荣, 陈智军, 马艳明, 苗雨. 外源丁酸对干旱胁迫下大麦产量及品质的影响[J]. 新疆农业科学, 2023, 60(9): 2173-2181. |
[7] | 鞠乐, 齐军仓, 陈培育, 牛银亭, 阴志刚. 干旱胁迫对大麦种子萌发、幼苗生长及生理特性的影响[J]. 新疆农业科学, 2023, 60(8): 1879-1886. |
[8] | 米尔扎提·木塔力甫, 石秀楠, 柏军兵, 祖拜代·阿布都克日木, 吾勒加勒哈斯·阿扎提, 石书兵. 不同脱绒方式及PEG胁迫下对棉花种子活力及幼苗性状的影响[J]. 新疆农业科学, 2023, 60(7): 1561-1568. |
[9] | 杨金钰, 王西和, 孙九胜. 水培对全株大麦和小麦苗氨基酸组成的影响及对比分析[J]. 新疆农业科学, 2023, 60(7): 1589-1595. |
[10] | 曲可佳, 时晓磊, 张恒, 王兴州, 耿洪伟, 丁孙磊, 张金波, 严勇亮. PEG处理下引进春小麦品种苗期抗旱性评价[J]. 新疆农业科学, 2023, 60(6): 1363-1371. |
[11] | 邵盘霞, 赵准, 邵武奎, 郝晓燕, 高升旗, 李建平, 胡文冉, 黄全生. 玉米ZmCDPK22基因在干旱胁迫下的表达分析[J]. 新疆农业科学, 2023, 60(6): 1372-1378. |
[12] | 韦伟, 单守明, 徐文娣, 李光宗. 山葡萄‘双优’组织培养生根期愈伤组织的转录组分析[J]. 新疆农业科学, 2023, 60(6): 1451-1459. |
[13] | 汤东, 安玉光, 程平, 李宏, 杨建军, 王凯. 天山北坡前山带典型灌木光合特性对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(6): 1531-1539. |
[14] | 王菲菲, 谷洋洋, 于国琦, 程婧晔, 潘惠, 王顺猛, 朱娟, 吕超, 郭宝健, 许如根. 啤酒大麦的籽粒外观品质与麦芽品质指标的差异性分析[J]. 新疆农业科学, 2023, 60(5): 1134-1140. |
[15] | 陈果, 郝晓燕, 高升旗, 胡文冉, 赵准, 黄全生. 玉米钙依赖蛋白激酶全基因组鉴定及抗旱表达分析[J]. 新疆农业科学, 2023, 60(4): 857-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||