新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1112-1121.DOI: 10.6048/j.issn.1001-4330.2024.05.009
刘超群1(), 董合林2,3, 万素梅1, 郑苍松2, 骆磊2, 马云珍2, 董祯林1, 陈国栋1,3(), 李鹏程2,3()
收稿日期:
2023-09-28
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
李鹏程(1972-),男,湖北荆州人,副研究员,博士,硕士生导师,研究方向为棉花养分高效管理,(E-mail)lipengchengcri@163.com;作者简介:
刘超群(1997-),男,河南周口人,硕士研究生,研究方向为干旱区农作制度,(E-mail)1172638580@qq.com
基金资助:
LIU Chaoqun1(), DONG Helin2,3, WAN Sumei1, ZHENG Cangsong2, LUO Lei2, MA Yunzhen2, DONG Zhenlin1, CHEN Guodong1,3(), LI Pengcheng2,3()
Received:
2023-09-28
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
LI Pengcheng (1972-), associate researcher, Ph.D.,research direction:cotton nutrient efficient management, (E-mail)lipengchengcri@163.com; 摘要:
【目的】研究不同行距配置棉花适宜的种植密度,为新疆南疆机采棉筛选合理种植方式和适宜密度提供理论依据。【方法】通过大田试验,采用裂区试验设计,主区设置4个行距配置方式,即H3:1膜3行(76 cm等行距)、H4:1膜4行(66+10+66)cm、H5:1膜5行(10+66+66+10 ) cm、H6:1膜6行(10+66+10+66+10) cm;副区设置3个种植密度,分别为A1:15×104株/hm2、A2:18.75×104株/hm2、A3:22.5×104株/hm2,测定棉花农艺性状、叶面积、干物质积累量及籽棉产量,筛选不同行距配置下的棉花最适种植密度。【结果】不同行距棉花株高在打顶后表现为随密度增加而增高,A3处理的株高均显著高于A1处理;打顶后棉花茎粗随密度增加而变小,A1处理的茎粗均显著高于A3;棉花最大叶面积指数LAI在H3和H4条件下时表现为随密度的增加而增大,而在H5和H6条件下则表现为A2密度下最大;不同行距棉花最大单位面积干物质积累量均为A2处理的最大;密度显著影响籽棉产量和单位面积成铃数,行距显著影响单铃重。H5A2获得最高籽棉产量为7 026.9 kg/hm2,较其他处理高0.8%~14.5%。【结论】1膜3行(H3)、1膜4行(H4)、1膜6行(H6)行距配置下较优化的棉花种植密度为22.5×104株/hm2,1膜5行(H5)适宜棉花种植密度为18.75×104株/hm2。
中图分类号:
刘超群, 董合林, 万素梅, 郑苍松, 骆磊, 马云珍, 董祯林, 陈国栋, 李鹏程. 不同行距配置方式下棉花适宜种植密度的筛选[J]. 新疆农业科学, 2024, 61(5): 1112-1121.
LIU Chaoqun, DONG Helin, WAN Sumei, ZHENG Cangsong, LUO Lei, MA Yunzhen, DONG Zhenlin, CHEN Guodong, LI Pengcheng. Study on suitable planting density of cotton with different row spacing configurations in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1112-1121.
行距 Line spacing | 密度 Density | 回归方程 Regression equation | 决定系数R2 Coefficients determination | t0(d) | Vm [g/(d·株)] | t1 (d) | t2 (d) | △t (d) |
---|---|---|---|---|---|---|---|---|
H3 | A1 | Y=1 871.0/(1+e4.889 1-0.070 653 t) | 0.996 4** | 69.2 | 33.1 | 50.5 | 87.8 | 37.3 |
A2 | Y=2 313.5/(1+e4.358 3-0.061 060 t) | 0.988 6* | 71.3 | 35.3 | 49.8 | 92.9 | 43.1 | |
A3 | Y=2 404.7/(1+e4.571 0-0.066 963 t) | 0.989 7* | 68.2 | 40.3 | 48.6 | 87.9 | 39.3 | |
H4 | A1 | Y=1 970.1/(1+e4.667 5-0.062 347 t) | 0.995 2** | 74.9 | 30.7 | 53.8 | 96.1 | 42.3 |
A2 | Y=2 452.1/(1+e4.453 4-0.054 947 t) | 0.992 0** | 81.1 | 33.7 | 57.1 | 105.1 | 48.0 | |
A3 | Y=2 085.1/(1+e5.113 2-0.082 063) | 0.967 4* | 62.3 | 42.8 | 46.2 | 78.3 | 32.1 | |
H5 | A1 | Y=2 159.0/(1+e4.442 4-0.057 897 t) | 0.999 7** | 76.7 | 31.3 | 54.0 | 99.5 | 45.5 |
A2 | Y=2 302.2/(1+e3.779 0-0.050 736 t) | 0.960 1* | 74.5 | 29.2 | 48.6 | 100.5 | 52.0 | |
A3 | Y=2 229.6/(1+e5.228 5-0.081 024 t) | 0.998 7** | 64.5 | 45.1 | 48.3 | 80.8 | 32.5 | |
H6 | A1 | Y=1 850.4/(1+e5.370 4-0.077 934 t) | 0.995 3** | 68.9 | 36.0 | 52.0 | 85.8 | 33.8 |
A2 | Y=2 109.0/(1+e6.282 2-0.094 850 t) | 0.983 6* | 66.2 | 50.0 | 52.3 | 80.1 | 27.8 | |
A3 | Y=2 044.6/(1+e3.992 1-0.058 679 t) | 1.000 0** | 68.0 | 30.0 | 45.6 | 90.4 | 44.9 |
表1 不同处理下棉花干物质积累回归方程
Tab.1 Dry matter accumulation equations for cotton per unit area of different treatments
行距 Line spacing | 密度 Density | 回归方程 Regression equation | 决定系数R2 Coefficients determination | t0(d) | Vm [g/(d·株)] | t1 (d) | t2 (d) | △t (d) |
---|---|---|---|---|---|---|---|---|
H3 | A1 | Y=1 871.0/(1+e4.889 1-0.070 653 t) | 0.996 4** | 69.2 | 33.1 | 50.5 | 87.8 | 37.3 |
A2 | Y=2 313.5/(1+e4.358 3-0.061 060 t) | 0.988 6* | 71.3 | 35.3 | 49.8 | 92.9 | 43.1 | |
A3 | Y=2 404.7/(1+e4.571 0-0.066 963 t) | 0.989 7* | 68.2 | 40.3 | 48.6 | 87.9 | 39.3 | |
H4 | A1 | Y=1 970.1/(1+e4.667 5-0.062 347 t) | 0.995 2** | 74.9 | 30.7 | 53.8 | 96.1 | 42.3 |
A2 | Y=2 452.1/(1+e4.453 4-0.054 947 t) | 0.992 0** | 81.1 | 33.7 | 57.1 | 105.1 | 48.0 | |
A3 | Y=2 085.1/(1+e5.113 2-0.082 063) | 0.967 4* | 62.3 | 42.8 | 46.2 | 78.3 | 32.1 | |
H5 | A1 | Y=2 159.0/(1+e4.442 4-0.057 897 t) | 0.999 7** | 76.7 | 31.3 | 54.0 | 99.5 | 45.5 |
A2 | Y=2 302.2/(1+e3.779 0-0.050 736 t) | 0.960 1* | 74.5 | 29.2 | 48.6 | 100.5 | 52.0 | |
A3 | Y=2 229.6/(1+e5.228 5-0.081 024 t) | 0.998 7** | 64.5 | 45.1 | 48.3 | 80.8 | 32.5 | |
H6 | A1 | Y=1 850.4/(1+e5.370 4-0.077 934 t) | 0.995 3** | 68.9 | 36.0 | 52.0 | 85.8 | 33.8 |
A2 | Y=2 109.0/(1+e6.282 2-0.094 850 t) | 0.983 6* | 66.2 | 50.0 | 52.3 | 80.1 | 27.8 | |
A3 | Y=2 044.6/(1+e3.992 1-0.058 679 t) | 1.000 0** | 68.0 | 30.0 | 45.6 | 90.4 | 44.9 |
行距 Row spacing | 密度 Density | 收获株数 Harvested plants (104 plants/hm2) | 单位面积铃数 Boll No. per plan (个/m2) | 单铃重 Single boll weight (g) | 籽棉产量 Seed cotton yield (kg/hm2) | 衣分 Lint percentage (%) |
---|---|---|---|---|---|---|
H3 | A1 | 15.2 c | 97.2 b | 6.1 bcd | 6 009.5 e | 38.1 c |
A2 | 18.3 b | 104.8 b | 6.0 d | 6 079.0 de | 40.8 abc | |
A3 | 22.6a | 102.8 b | 6.1 cd | 6 255.3 cde | 41.1 abc | |
H4 | A1 | 14.7c | 98.6 b | 6.5 ab | 6 298.7bcde | 39.8 abc |
A2 | 18.8 b | 107.5 ab | 6.5 abc | 6 866.1 abc | 38.4 bc | |
A3 | 22.6a | 105.8 ab | 6.6 a | 6 976.6 ab | 41.9 abc | |
H5 | A1 | 14.9 c | 99.5 b | 6.1 bcd | 6 017.2 e | 39.7 abc |
A2 | 18.6 b | 115.6 a | 6.1 abcd | 7 026.9 a | 42.4 ab | |
A3 | 22.5a | 107.7 ab | 6.4 abcd | 6 840.3 abc | 41.4 abc | |
H6 | A1 | 14.8 c | 98.8 b | 6.2 abcd | 6 030.6 e | 41.7 abc |
A2 | 18.8b | 101.8 b | 6.1 cd | 6 180.8 cde | 43.2 a | |
A3 | 23.0a | 101.5 b | 6.6 a | 6 776.2abcd | 41.6 abc | |
变异来源Source of variation | ||||||
行距 Row spacing | ns | ns | ** | ns | ns | |
密度 Density | ns | ** | ns | ** | ns | |
密度×行距 Density×Row spacing | ns | ns | ns | ns | ns |
表2 不同处理下棉花产量和产量构成因素变化
Tab.2 Changes of planting density and row spacing on yield and yield component of cotton
行距 Row spacing | 密度 Density | 收获株数 Harvested plants (104 plants/hm2) | 单位面积铃数 Boll No. per plan (个/m2) | 单铃重 Single boll weight (g) | 籽棉产量 Seed cotton yield (kg/hm2) | 衣分 Lint percentage (%) |
---|---|---|---|---|---|---|
H3 | A1 | 15.2 c | 97.2 b | 6.1 bcd | 6 009.5 e | 38.1 c |
A2 | 18.3 b | 104.8 b | 6.0 d | 6 079.0 de | 40.8 abc | |
A3 | 22.6a | 102.8 b | 6.1 cd | 6 255.3 cde | 41.1 abc | |
H4 | A1 | 14.7c | 98.6 b | 6.5 ab | 6 298.7bcde | 39.8 abc |
A2 | 18.8 b | 107.5 ab | 6.5 abc | 6 866.1 abc | 38.4 bc | |
A3 | 22.6a | 105.8 ab | 6.6 a | 6 976.6 ab | 41.9 abc | |
H5 | A1 | 14.9 c | 99.5 b | 6.1 bcd | 6 017.2 e | 39.7 abc |
A2 | 18.6 b | 115.6 a | 6.1 abcd | 7 026.9 a | 42.4 ab | |
A3 | 22.5a | 107.7 ab | 6.4 abcd | 6 840.3 abc | 41.4 abc | |
H6 | A1 | 14.8 c | 98.8 b | 6.2 abcd | 6 030.6 e | 41.7 abc |
A2 | 18.8b | 101.8 b | 6.1 cd | 6 180.8 cde | 43.2 a | |
A3 | 23.0a | 101.5 b | 6.6 a | 6 776.2abcd | 41.6 abc | |
变异来源Source of variation | ||||||
行距 Row spacing | ns | ns | ** | ns | ns | |
密度 Density | ns | ** | ns | ** | ns | |
密度×行距 Density×Row spacing | ns | ns | ns | ns | ns |
[1] | 冯国艺, 张谦, 祁虹, 等. 密度对分期收获滨海盐碱地机采棉的产量和品质一致性影响[J]. 山西农业大学学报(自然科学版), 2018, 38(11): 1-5. |
FENG Guoyi, ZHANG Qian, QI Hong, et al. The effects of crop density on the yield and quality consistency of cottons harvested by picking machine in coastal saline-alkali area of eastern Hebei Province[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(11): 1-5. | |
[2] | 张文, 刘铨义, 曾庆涛, 等. 不同行距配置对机采棉生长发育及光合特性的影响[J]. 干旱地区农业研究, 2022, 40(5): 155-164. |
ZHANG Wen, LIU Quanyi, ZENG Qingtao, et al. Effects of different row spacing on the growth and photosynthetic characteristics of machine picked cotton[J]. Agricultural Research in the Arid Areas, 2022, 40(5): 155-164. | |
[3] | 王爱玉, 孔祥良, 张桂芝, 等. 不同种植密度对棉花产量及其相关性状的影响[J]. 山东农业科学, 2016, 48(12): 80-82. |
WANG Aiyu, KONG Xiangliang, ZHANG Guizhi, et al. Influences of different planting densities on cotton yield and related properties[J]. Shandong Agricultural Sciences, 2016, 48(12): 80-82. | |
[4] | 丁宸旸, 吕新, 韩小强, 等. 机采棉种植模式对植保机械化学脱叶作业效果的影响[J]. 农业工程学报, 2022, 38(20): 1-8. |
DING Chenyang, LYU Xin, HAN Xiaoqiang, et al. Effects of machine-harvested cotton planting pattern on the efficacy of chemical defoliant application of plant protection machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 1-8. | |
[5] |
程少雨, 林涛, 吴凤全, 等. 密度和灌溉定额互作对76cm等行距机采棉田水分分布及利用的影响[J]. 新疆农业科学, 2022, 59(10): 2341-2351.
DOI |
CHENG Shaoyu, LIN Tao, WU Fengquan, et al. Effects of density and irrigation quota under drip irrigation on nitrate distribution and nitrogen utilization in cotton field with constant row spacing of 76cm[J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2341-2351.
DOI |
|
[6] | Galanopoulou-Sendouka S, Sficas A G, Fotiadis N A, et al. Effect of population density, planting date, and genotype on plant growth and development of Cotton1[J]. Agronomy Journal, 1980, 72(2): 347-353. |
[7] | 孙巨龙, 刘帅, 胡启星, 等. 不同种植密度对棉花空间成铃分布的影响[J]. 棉花科学, 2021, 43(1): 31-36. |
SUN Julong, LIU Shuai, HU Qixing, et al. The influence of different planting density on the spatial distribution of cotton boll[J]. Cotton Sciences, 2021, 43(1): 31-36. | |
[8] |
华烨, 周昊楠, 许婷婷, 等. 密度对棉花株间小气候、农艺性状及产量的影响[J]. 中国农学通报, 2021, 37(19): 36-41.
DOI |
HUA Ye, ZHOU Haonan, XU Tingting, et al. Impact of density on the microclimate, agronomic characteristics and yield of cotton plants[J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 36-41.
DOI |
|
[9] | 王全九, 王康, 苏李君, 等. 灌溉施氮和种植密度对棉花叶面积指数与产量的影响[J]. 农业机械学报, 2021, 52(12): 300-312. |
WANG Quanjiu, WANG Kang, SU Lijun, et al. Effect of irrigation amount, nitrogen application rate and planting density on cotton leaf area index and yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 300-312. | |
[10] | 李春梅, 李鹏程, 徐文修, 等. 密度对76 cm等行距机采棉生长发育及产量的影响[J]. 新疆农业大学学报, 2021, 44(1): 20-27. |
LI Chunmei, LI Pengcheng, XU Wenxiu, et al. Effects of density on growth and yield of cotton picking in 76cm contouring machine[J]. Journal of Xinjiang Agricultural University, 2021, 44(1): 20-27. | |
[11] | Nangial Khan, Han Yingchun, Xing Fangfang, et al. Plant Density Influences Reproductive Growth, Lint Yield and Boll Spatial Distribution of Cotton[J]. Agronomy, 2019, 10(1). |
[12] |
毛树春, 李亚兵, 董合忠. 中国棉花辉煌70年——我国走出了一条适合国情、具有中国特色的棉花发展道路、发展模式和发展理论[J]. 中国棉花, 2019, 46(7): 1-14.
DOI |
MAO Shuchun, LI Yabing, DONG Hezhong. Brilliant 70 Years of China Cotton—china has embarked on a development path, model and theory of cotton production with Chinese characteristics suitable for national conditions[J]. China Cotton, 2019, 46(7): 1-14.
DOI |
|
[13] | 周相, 冯璐, 刘锦涛, 等. 不同种植方式和密度对棉花干物质积累特征及产量形成的影响[J]. 山东农业科学, 2022, 54(3): 43-48. |
ZHOU Xiang, FENG Lu, LIU Jintao, et al. Effects of different planting methods and densities on dry matter accumulation characteristics and yield formation of cotton[J]. Shandong Agricultural Sciences, 2022, 54(3): 43-48. | |
[14] |
王彦辉, 樊永强, 韩燕丽, 等. 种植密度对豫农棉31产量和品质的影响[J]. 中国棉花, 2021, 48(12): 20-22.
DOI |
WANG Yanhui, FAN Yongqiang, HAN Yanli, et al. Effects of planting density on the yield and fiber quality of Yunongmian 31[J]. China Cotton, 2021, 48(12): 20-22.
DOI |
|
[15] | Khan A, Wang L S, Ali S, et al. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake[J]. Field Crops Research, 2017, 214: 164-174. |
[16] | 万素梅, 董合林, 徐文修, 等. 新疆棉田种植制度优化及其轻简技术创建[J]. 中国高新科技, 2022,(9): 146-148. |
WAN Sumei, DONG Helin, XU Wenxiu, et al. Optimization of planting system and creation of lightweight technology in Xinjiang[J]. China High-Tech, 2022, (9): 146-148. | |
[17] |
霍飞超, 李鹏程, 李运海, 等. 棉花1膜3行模式下密度和缩节胺用量优化组合[J]. 新疆农业科学, 2020, 57(6): 1039-1048.
DOI |
HUO Feichao, LI Pengcheng, LI Yunhai, et al. Preliminary study on the optimal combination of cotton density and mepiquat chloride application rate under the planting mode of one film with three rows in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2020, 57(6): 1039-1048.
DOI |
|
[18] |
敦磊, 李鹏程, 余超, 等. 早熟棉区行距与密度互作对棉花产量的影响[J]. 新疆农业科学, 2020, 57(6): 981-989.
DOI |
DUN Lei, LI Pengcheng, YU Chao, et al. Effects of row spacing and density on cotton yield in early maturity cotton area[J]. Xinjiang Agricultural Sciences, 2020, 57(6): 981-989.
DOI |
|
[19] | 李义博, 陶福禄. 提高小麦光能利用效率机理的研究进展[J]. 中国农业气象, 2022, 43(2): 93-111. |
LI Yibo, TAO Fulu. Research progress on the mechanism of high light use efficiency in wheat[J]. Chinese Journal of Agrometeorology, 2022, 43(2): 93-111. | |
[20] | 梁亚军, 罗天睿, 郑巨云, 等. 不同机采棉配置冠层结构及产量性状差异研究[J]. 新疆农业科学, 2017, 54(6): 1008-1013. |
LIANG Yajun, LUO Tianrui, ZHENG Juyun, et al. Research on the different colonial canopy architecture characters and yield characters of machine harvesting cotton under different field collocation patterns[J]. Xinjiang Agricultural Sciences, 2017, 54(6): 1008-1013. | |
[21] | 张娜, 冯璐, 马云珍, 等. 种植密度对南疆机采棉群体农艺特征和产量的影响[J]. 中国农业科技导报, 2021, 23(11): 172-180. |
ZHANG Na, FENG Lu, MA Yunzhen, et al. Influence of planting density on the agronomic characteristics and yield of machine picked cotton in southern Xinjiang[J]. Journal of Agricultural Science and Technology, 2021, 23(11): 172-180.
DOI |
|
[22] | 陈德华, 陈源, 周桂生, 等. 长江流域棉区高产棉花干物质生产与产量及群体构成的关系[J]. 中国棉花, 2001, 28(10): 9-11. |
CHEN Dehua, CHEN Yuan, ZHOU Guisheng, et al. Relationship between dry matter production, yield and group composition of high-yield cotton in cotton area of Yangtze River Basin[J]. China Cotton, 2001, 28(10): 9-11. | |
[23] |
王志才, 李存东, 张永江, 等. 种植密度对棉花主要群体质量指标的影响[J]. 棉花学报, 2011, 23(3): 284-288.
DOI |
WANG Zhicai, LI Cundong, ZHANG Yongjiang, et al. Effects of different densities on main population quality of cotton[J]. Cotton Science, 2011, 23(3): 284-288. | |
[24] |
闫江伟, 张国娟, 田景山, 等. 不同施肥量对早熟陆地棉品种干物质累积及产量品质的影响[J]. 新疆农业科学, 2021, 58(11): 2000-2010.
DOI |
YAN Jiangwei, ZHANG Guojuan, TIAN Jingshan, et al. Effects of different fertilizer applications on the material production and yield of early upland cotton[J]. Xinjiang Agricultural Sciences, 2021, 58(11): 2000-2010.
DOI |
|
[25] | 吴杨焕, 李杰, 杨平, 等. 棉花不同密度下辐热积与生育进程及产量的关系[J]. 新疆农业科学, 2015, 52(10): 1765-1772. |
WU Yanghuan, LI Jie, YANG Ping, et al. Relationship between product of thermal effectiveness (PTE) and cotton growth and yield at different densities[J]. Xinjiang Agricultural Sciences, 2015, 52(10): 1765-1772. | |
[26] | Zhi X Y, Han Y C, Li Y B, et al. Effects of plant density on cotton yield components and quality[J]. Journal of Integrative Agriculture, 2016, 15(7): 1469-1479. |
[1] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[2] | 杨梅, 赵红梅, 迪丽热巴·夏米西丁, 杨卫君, 张金汕, 惠超. 氮肥减量配施生物质炭对春小麦群体结构、光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1582-1589. |
[3] | 鲁伟丹, 周远航, 马小龙, 高江龙, 樊晓琴, 郭建富, 李健强, 林明. 不同比例有机肥替代化肥对甜菜植株养分及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1631-1639. |
[4] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[5] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
[6] | 马百幻, 赵强, 谢佳, 徐开玥, 任若飞, 宋兴虎. 生物药剂复配对棉花黄萎病防治及生长发育的影响[J]. 新疆农业科学, 2024, 61(7): 1748-1756. |
[7] | 马勇, 刘慧, 高红梅, 康雪, 马春晖. 不同氮素水平下紫花苜蓿与多年生黑麦草混播对其产量和营养品质的影响[J]. 新疆农业科学, 2024, 61(7): 1793-1804. |
[8] | 叶萍毅, 龙遗磊, 谭彦平, 杜霄, 安梦洁, 陶志鑫, 梁发瑞, 艾先涛, 胡守林. 陆地棉果枝夹角与机采农艺性状鉴定评价[J]. 新疆农业科学, 2024, 61(6): 1318-1327. |
[9] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[10] | 刘跃, 贾永红, 张金汕, 于月华, 王润琪, 李丹丹, 石书兵. 滴灌条件下不同高油酸花生品种比较[J]. 新疆农业科学, 2024, 61(6): 1361-1367. |
[11] | 阿不都卡地尔·库尔班, 潘竟海, 陈友强, 刘华君, 董心久, 白晓山, 李思忠, 高卫时, 沙红, 李小惠. 基于产量相关性状综合评价晚播甜菜品种的适应性[J]. 新疆农业科学, 2024, 61(6): 1368-1377. |
[12] | 赵云, 冯国郡, 古丽扎提·巴孜尔别克, 胡相伟, 苏比努尔·卡德尔, 李鹏兵, 邵疆, 刘杰. 钾肥用量对滴灌谷子生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(6): 1378-1385. |
[13] | 刘富余, 张江辉, 白云岗, 赵经华, 曹彪. 基于Meta法定量分析亏缺灌溉作物产量及水分利用效率[J]. 新疆农业科学, 2024, 61(6): 1487-1496. |
[14] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[15] | 王润琪, 贾永红, 王玉娇, 刘跃, 李丹丹, 董艳雪, 古力尼尕尔·吐尔洪, 张路路, 张金汕, 石书兵. 不同滴灌量对匀播冬小麦生长发育和产量的影响[J]. 新疆农业科学, 2024, 61(5): 1048-1056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||