新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1122-1130.DOI: 10.6048/j.issn.1001-4330.2024.05.010
施俊杰1(), 侯献飞2, 于月华1, 李强2(), 苗昊翠2(), 贾东海2, 顾元国2, 汪天玲2
收稿日期:
2023-10-15
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
李强(1980-),男,新疆乌鲁木齐人,研究员,博士,硕士生导师,研究方向为油料作物育种与栽培,(E-mail)lq19820302@126.com;作者简介:
施俊杰(1997-),女,山东济宁人,硕士研究生,研究方向为花生抗逆(盐碱)种质鉴定,(E-mail)1824949119@qq.com
基金资助:
SHI Junjie1(), HOU Xianfei2, YU Yuehua1, LI Qiang2(), MIAO Haocui2(), JIA Donghai2, GU Yuanguo2, WANG Tianling2
Received:
2023-10-15
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
LI Qiang(1980-),male,from Xinjiang,researcher,Ph.D,research direction:oil crop breeding and cultivation,(E-mail)lq19820302@126.com; Supported by:
摘要:
【目的】研究不同覆盖模式与补充灌溉对花生干物质积累速率、光合特性及品质的影响。【方法】以花生品种冀花18(半匍匐型)和花育9610(直立型)为供试材料,设置无膜限制灌水(T1)、无膜中等灌水(T2)、无膜充分灌水(T3)和有膜充分灌水(T4)4个处理,分析不同处理下花生光合特性及品质的差异,制定适宜的组合模式。【结果】花育9610生育前期的土壤含水率T4较T1处理高3.26%,冀花18 T4较T1处理高3.63%;相同处理下,冀花18土壤含水量高于花育9610。T4处理下花生干物质积累速率显著高于其他处理,与T1~T3处理相比,成熟期花育9610干物质积累速率地下部分别提高了0.6%、0.5%和0.3%,地上部分别提高了34.4%、17.9%和4.2%;冀花18干物质积累速率地下部分别提高了1.2%、0.8%和0.2%,地上部分别提高54.9%、37.2%和27.3%。相同处理下冀花18的蛋白质含量、含油量、油酸含量均高于花育9610;无膜处理下花育9610各类指标随着水分的增加而提高。【结论】T4处理下花生各指标最佳。冀花18作为半匍匐型花生,能够增加地表覆盖面积,减少水分的蒸发,有利于提高土壤含水量,增加植株干物质积累,提高花生光合速率及品质。半匍匐型花生在无膜栽培模式下综合性状指标相对较优。
中图分类号:
施俊杰, 侯献飞, 于月华, 李强, 苗昊翠, 贾东海, 顾元国, 汪天玲. 不同覆盖模式与补充灌溉对花生光合特性及干物质积累速率的影响[J]. 新疆农业科学, 2024, 61(5): 1122-1130.
SHI Junjie, HOU Xianfei, YU Yuehua, LI Qiang, MIAO Haocui, JIA Donghai, GU Yuanguo, WANG Tianling. Effects of different mulching patterns and supplementary irrigation on peanut photosynthesis and dry matter accumulation[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1122-1130.
图1 不同时期不同深度下土壤含水率的变化 注:T1:无膜限制灌水;T2:无膜中等灌水;T3:无膜充分灌水;T4:有膜充分灌水
Fig.1 Changes of soil moisture content at different depths in different periods Note:T1:no film to limit irrigation;T2:no film medium irrigation;T3:full irrigation without film;T4:full irrigation with film
处理 Treat- ments | 品种 Vari- eties | 初花期-开花期 Initial flowering- Flowering period | 开花期-下针期 Flowering period-Needling period | 下针期-结荚期 Needling period-Pod setting stage | 结荚期-成熟期 Pod setting stage- Mature period | ||||
---|---|---|---|---|---|---|---|---|---|
地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | ||
T1无膜 限制灌水 No film to limit irrigation | 花育 9610 | 1.4±0.03ab | 17.4±0.20b | 1.7±0.04b | 32.0±0.10c | 3.0±0.32c | 48.8±6.91d | 1.8±0.07b | 16.1±1.08c |
冀花 18 | 0.7±0.01b | 9.8±0.04bc | 2.7±0.03ab | 46.3±0.90b | 3.8±0.45c | 60.1±2.94c | 1.9±0.28b | 20.8±7.17c | |
T2无膜 中等灌水 No film medium irrigation | 花育 9610 | 1.1±0.01ab | 17.1±0.04b | 2.9±0.06ab | 48.6±0.18ab | 4.1±0.12b | 64.6±7.24b | 1.9±0.30b | 32.6±2.99bc |
冀花 18 | 0.8±0.02b | 6.6±0.06c | 3.0±0.03a | 53.3±0.11ab | 4.1±0.23b | 65.2±8.23b | 2.3±0.26ab | 38.5±8.65bc | |
T3无膜 充分灌水 Full irrigation without film | 花育 9610 | 0.4±0.01b | 7.9±0.03bc | 3.0±0.02a | 56.4±0.06ab | 4.2±0.16b | 71.1±3.92ab | 2.1±0.3ab | 46.3±9.96b |
冀花 18 | 0.4±0.03b | 5.6±0.14c | 3.1±0.10a | 57.3±0.21a | 4.8±0.32ab | 70.2±8.51ab | 2.9±0.35a | 48.4±12.57b | |
T4有膜 充分灌水 Full irrigation with film | 花育 9610 | 2.8±0.01a | 45.4±0.10a | 3.1±0.10a | 56.5±0.18ab | 5.7±0.19a | 96.7±2.5a | 2.4±0.20a | 50.5±8.89ab |
冀花 18 | 1.8±0.01a | 33.6±0.17a | 3.3±0.01a | 67.9±0.25a | 5.0±0.25a | 97.9±4.62a | 3.1±0.34a | 75.7±17.51a |
表1 不同时期花生地上部与地下部干物质积累速率的变化
Tab.1 Changes of growth rate in dry matter in the ground and underground of peanut in different periods(%)
处理 Treat- ments | 品种 Vari- eties | 初花期-开花期 Initial flowering- Flowering period | 开花期-下针期 Flowering period-Needling period | 下针期-结荚期 Needling period-Pod setting stage | 结荚期-成熟期 Pod setting stage- Mature period | ||||
---|---|---|---|---|---|---|---|---|---|
地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | 地下部干物 质积累速率 Underground dry matter growth rate | 地上部干物 质积累速率 Growth rate of aboveground dry matter | ||
T1无膜 限制灌水 No film to limit irrigation | 花育 9610 | 1.4±0.03ab | 17.4±0.20b | 1.7±0.04b | 32.0±0.10c | 3.0±0.32c | 48.8±6.91d | 1.8±0.07b | 16.1±1.08c |
冀花 18 | 0.7±0.01b | 9.8±0.04bc | 2.7±0.03ab | 46.3±0.90b | 3.8±0.45c | 60.1±2.94c | 1.9±0.28b | 20.8±7.17c | |
T2无膜 中等灌水 No film medium irrigation | 花育 9610 | 1.1±0.01ab | 17.1±0.04b | 2.9±0.06ab | 48.6±0.18ab | 4.1±0.12b | 64.6±7.24b | 1.9±0.30b | 32.6±2.99bc |
冀花 18 | 0.8±0.02b | 6.6±0.06c | 3.0±0.03a | 53.3±0.11ab | 4.1±0.23b | 65.2±8.23b | 2.3±0.26ab | 38.5±8.65bc | |
T3无膜 充分灌水 Full irrigation without film | 花育 9610 | 0.4±0.01b | 7.9±0.03bc | 3.0±0.02a | 56.4±0.06ab | 4.2±0.16b | 71.1±3.92ab | 2.1±0.3ab | 46.3±9.96b |
冀花 18 | 0.4±0.03b | 5.6±0.14c | 3.1±0.10a | 57.3±0.21a | 4.8±0.32ab | 70.2±8.51ab | 2.9±0.35a | 48.4±12.57b | |
T4有膜 充分灌水 Full irrigation with film | 花育 9610 | 2.8±0.01a | 45.4±0.10a | 3.1±0.10a | 56.5±0.18ab | 5.7±0.19a | 96.7±2.5a | 2.4±0.20a | 50.5±8.89ab |
冀花 18 | 1.8±0.01a | 33.6±0.17a | 3.3±0.01a | 67.9±0.25a | 5.0±0.25a | 97.9±4.62a | 3.1±0.34a | 75.7±17.51a |
测量指标 Measurement indicators | 品种 Varieties | 不同处理(平均值±标准差) Different treatments(mean±standard deviation) | |||
---|---|---|---|---|---|
T1无膜限制灌水 T1 Non-film limited irrigation | T2无膜中等灌水 T2 Medium irrigation without film | T3无膜充分灌水 T3 Full irrigation Without film | T4有膜充分灌水 T4 Fullirrigation with film | ||
蛋白质 Protein | 花育9610 | 21.56±0.38a | 22.79±0.32a | 22.90±0.17a | 22.97±0.11a |
冀花18 | 24.06±0.09a | 23.95±0.12b | 23.23±0.05b | 24.93±0.47a | |
含油量 Oil content | 花育9610 | 49.61±0.29a | 50.35±0.44b | 50.42±0.19a | 50.20±0.02a |
冀花18 | 49.87±0.12b | 50.57±0.04b | 51.21±0.06a | 51.23±0.34a | |
脯氨酸 Proline | 花育9610 | 0.54±0.02c | 0.56±0.02c | 0.63±0.01b | 0.74±0.01a |
冀花18 | 0.62±0.01b | 0.58±0.04b | 0.56±0.01b | 0.75±0.01a | |
亚油酸 Linoleic acid | 花育9610 | 42.15±0.08c | 43.21±0.42b | 43.68±0.06ab | 44.58±0.31a |
冀花18 | 12.47±0.07b | 15.99±1.09ab | 14.61±1.33ab | 17.37±1.19a | |
油酸 Oleic acid | 花育9610 | 31.74±0.63b | 32.85±0.12b | 32.95±0.10b | 34.29±0.21a |
冀花18 | 63.68±1.62b | 65.49±1.02ab | 67.40±1.55ab | 69.11±0.02a |
表2 不同处理下花生品质的变化
Tab.2 Changes in peanut quality under different treatments
测量指标 Measurement indicators | 品种 Varieties | 不同处理(平均值±标准差) Different treatments(mean±standard deviation) | |||
---|---|---|---|---|---|
T1无膜限制灌水 T1 Non-film limited irrigation | T2无膜中等灌水 T2 Medium irrigation without film | T3无膜充分灌水 T3 Full irrigation Without film | T4有膜充分灌水 T4 Fullirrigation with film | ||
蛋白质 Protein | 花育9610 | 21.56±0.38a | 22.79±0.32a | 22.90±0.17a | 22.97±0.11a |
冀花18 | 24.06±0.09a | 23.95±0.12b | 23.23±0.05b | 24.93±0.47a | |
含油量 Oil content | 花育9610 | 49.61±0.29a | 50.35±0.44b | 50.42±0.19a | 50.20±0.02a |
冀花18 | 49.87±0.12b | 50.57±0.04b | 51.21±0.06a | 51.23±0.34a | |
脯氨酸 Proline | 花育9610 | 0.54±0.02c | 0.56±0.02c | 0.63±0.01b | 0.74±0.01a |
冀花18 | 0.62±0.01b | 0.58±0.04b | 0.56±0.01b | 0.75±0.01a | |
亚油酸 Linoleic acid | 花育9610 | 42.15±0.08c | 43.21±0.42b | 43.68±0.06ab | 44.58±0.31a |
冀花18 | 12.47±0.07b | 15.99±1.09ab | 14.61±1.33ab | 17.37±1.19a | |
油酸 Oleic acid | 花育9610 | 31.74±0.63b | 32.85±0.12b | 32.95±0.10b | 34.29±0.21a |
冀花18 | 63.68±1.62b | 65.49±1.02ab | 67.40±1.55ab | 69.11±0.02a |
主成分 Main ingredients | 初始特征值Initial eigenvalue | ||
---|---|---|---|
合计 Total | 方差贡献率 Variance contribution rate(%) | 累积方差 贡献率 Cumulative variance contribution rate(%) | |
1 | 5.757 | 33.868 | 33.868 |
2 | 3.523 | 20.726 | 54.593 |
3 | 2.842 | 16.716 | 71.31 |
4 | 1.391 | 8.184 | 79.493 |
5 | 0.888 | 5.222 | 84.715 |
6 | 0.778 | 4.575 | 89.29 |
7 | 0.512 | 3.01 | 92.3 |
8 | 0.472 | 2.776 | 95.076 |
9 | 0.275 | 1.616 | 96.691 |
10 | 0.220 | 1.294 | 97.985 |
11 | 0.179 | 1.052 | 99.038 |
12 | 0.097 | 0.569 | 99.607 |
13 | 0.028 | 0.167 | 99.774 |
14 | 0.026 | 0.152 | 99.926 |
15 | 0.011 | 0.067 | 99.993 |
16 | 0.001 | 0.007 | 100 |
表3 主成分方差贡献率
Tab.3 Variance contribution rate of principal component analysis
主成分 Main ingredients | 初始特征值Initial eigenvalue | ||
---|---|---|---|
合计 Total | 方差贡献率 Variance contribution rate(%) | 累积方差 贡献率 Cumulative variance contribution rate(%) | |
1 | 5.757 | 33.868 | 33.868 |
2 | 3.523 | 20.726 | 54.593 |
3 | 2.842 | 16.716 | 71.31 |
4 | 1.391 | 8.184 | 79.493 |
5 | 0.888 | 5.222 | 84.715 |
6 | 0.778 | 4.575 | 89.29 |
7 | 0.512 | 3.01 | 92.3 |
8 | 0.472 | 2.776 | 95.076 |
9 | 0.275 | 1.616 | 96.691 |
10 | 0.220 | 1.294 | 97.985 |
11 | 0.179 | 1.052 | 99.038 |
12 | 0.097 | 0.569 | 99.607 |
13 | 0.028 | 0.167 | 99.774 |
14 | 0.026 | 0.152 | 99.926 |
15 | 0.011 | 0.067 | 99.993 |
16 | 0.001 | 0.007 | 100 |
指标 Indexes | 成分Component | 成分系数Composition coefficient | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
单株生物产量Single plant biomass | 0.659 | -0.147 | 0.457 | 0.385 | 0.114 | -0.042 | 0.161 | 0.277 |
主茎高Main stem height | 0.317 | 0.481 | 0.459 | -0.492 | 0.055 | 0.137 | 0.162 | -0.353 |
总分枝数Total number of branches | 0.195 | -0.152 | 0.370 | 0.521 | 0.034 | -0.043 | 0.130 | 0.375 |
第一侧枝长First lateral branch length | 0.736 | 0.090 | 0.185 | -0.373 | 0.128 | 0.025 | 0.065 | -0.268 |
有效枝长Effective branch length | 0.653 | 0.269 | 0.062 | 0.173 | 0.113 | 0.076 | 0.022 | 0.124 |
茎粗Stem diameter | 0.663 | -0.266 | -0.331 | -0.283 | 0.115 | -0.075 | -0.116 | -0.203 |
单株总果数 Total number of fruit branches per plant | 0.943 | 0.150 | -0.02 | -0.094 | 0.164 | 0.043 | -0.007 | -0.067 |
单株饱果Single plant full fruit | 0.946 | 0.145 | -0.026 | -0.102 | 0.164 | 0.041 | -0.009 | -0.073 |
双仁果Shuangren fruit | 0.904 | 0.203 | 0.024 | -0.205 | 0.157 | 0.058 | 0.008 | -0.147 |
单仁果Single kernel fruit | 0.782 | -0.077 | -0.167 | 0.296 | 0.136 | -0.022 | -0.059 | 0.213 |
单株产量Yield per plant | 0.439 | -0.126 | 0.627 | 0.410 | 0.076 | -0.036 | 0.221 | 0.295 |
百果重Hundred fruit weight | -0.424 | 0.077 | 0.801 | -0.196 | -0.074 | 0.022 | 0.282 | -0.141 |
百仁重100-seed weight | -0.365 | 0.113 | 0.847 | -0.187 | -0.063 | 0.032 | 0.298 | -0.135 |
光合速率Photosynthetic rate | -0.123 | 0.799 | 0.354 | 0.042 | -0.021 | 0.227 | 0.125 | 0.031 |
气孔导度Stomatal conductance | -0.023 | 0.940 | -0.100 | 0.240 | -0.004 | 0.267 | -0.035 | 0.172 |
胞间CO2浓度 Intercellular carbon dioxide concentration | -0.153 | 0.751 | -0.434 | 0.073 | -0.027 | 0.213 | -0.153 | 0.053 |
蒸腾速率Transpiration rate | -0.137 | 0.940 | -0.181 | 0.160 | -0.024 | 0.267 | -0.064 | 0.115 |
表4 主成分系数变化
Tab.4 Component coefficient of principal component changes
指标 Indexes | 成分Component | 成分系数Composition coefficient | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
单株生物产量Single plant biomass | 0.659 | -0.147 | 0.457 | 0.385 | 0.114 | -0.042 | 0.161 | 0.277 |
主茎高Main stem height | 0.317 | 0.481 | 0.459 | -0.492 | 0.055 | 0.137 | 0.162 | -0.353 |
总分枝数Total number of branches | 0.195 | -0.152 | 0.370 | 0.521 | 0.034 | -0.043 | 0.130 | 0.375 |
第一侧枝长First lateral branch length | 0.736 | 0.090 | 0.185 | -0.373 | 0.128 | 0.025 | 0.065 | -0.268 |
有效枝长Effective branch length | 0.653 | 0.269 | 0.062 | 0.173 | 0.113 | 0.076 | 0.022 | 0.124 |
茎粗Stem diameter | 0.663 | -0.266 | -0.331 | -0.283 | 0.115 | -0.075 | -0.116 | -0.203 |
单株总果数 Total number of fruit branches per plant | 0.943 | 0.150 | -0.02 | -0.094 | 0.164 | 0.043 | -0.007 | -0.067 |
单株饱果Single plant full fruit | 0.946 | 0.145 | -0.026 | -0.102 | 0.164 | 0.041 | -0.009 | -0.073 |
双仁果Shuangren fruit | 0.904 | 0.203 | 0.024 | -0.205 | 0.157 | 0.058 | 0.008 | -0.147 |
单仁果Single kernel fruit | 0.782 | -0.077 | -0.167 | 0.296 | 0.136 | -0.022 | -0.059 | 0.213 |
单株产量Yield per plant | 0.439 | -0.126 | 0.627 | 0.410 | 0.076 | -0.036 | 0.221 | 0.295 |
百果重Hundred fruit weight | -0.424 | 0.077 | 0.801 | -0.196 | -0.074 | 0.022 | 0.282 | -0.141 |
百仁重100-seed weight | -0.365 | 0.113 | 0.847 | -0.187 | -0.063 | 0.032 | 0.298 | -0.135 |
光合速率Photosynthetic rate | -0.123 | 0.799 | 0.354 | 0.042 | -0.021 | 0.227 | 0.125 | 0.031 |
气孔导度Stomatal conductance | -0.023 | 0.940 | -0.100 | 0.240 | -0.004 | 0.267 | -0.035 | 0.172 |
胞间CO2浓度 Intercellular carbon dioxide concentration | -0.153 | 0.751 | -0.434 | 0.073 | -0.027 | 0.213 | -0.153 | 0.053 |
蒸腾速率Transpiration rate | -0.137 | 0.940 | -0.181 | 0.160 | -0.024 | 0.267 | -0.064 | 0.115 |
品种/处理 Varieties Treatments | Y1 | Y2 | Y3 | Y4 | 得分 Points | 排序 Sort |
---|---|---|---|---|---|---|
花育9610/T1无膜限制灌水 Huayu9610 non-film limited irrigation | -4.79 | -3.39 | 1.65 | -0.37 | -6.91 | 8 |
冀花18/T1无膜限制灌水 Jihua 18 non-film limited irrigation | -5.81 | 0.54 | 2.96 | -0.64 | -2.95 | 6 |
花育9610/T2无膜中等灌水 Huayu9610 medium irrigation without film | -5.19 | 1.94 | 0.47 | -0.17 | -2.94 | 7 |
冀花18/T2无膜中等灌水 Jihua 18 medium irrigation without film | 3.92 | -2.59 | -2.92 | -0.53 | -2.12 | 4 |
花育9610/T3无膜充分灌水 Huayu9610 full irrigation Without film | -1.51 | 0.79 | -2.79 | 0.78 | -2.72 | 5 |
冀花18/T3无膜充分灌水 Jihua 18 full irrigation Without film | 2.16 | 0.44 | -3.18 | 0.82 | 0.24 | 3 |
花育9610/T4有膜充分灌水 Huayu9610 full irrigation with film | -1.14 | 2.30 | 2.27 | -0.73 | 2.71 | 2 |
冀花18/T4有膜充分灌水 Jihua 18 full irrigation with film | 8.29 | 0.73 | 2.83 | 0.35 | 12.20 | 1 |
表5 主成分评分
Tab.5 Main components of integrated evaluation
品种/处理 Varieties Treatments | Y1 | Y2 | Y3 | Y4 | 得分 Points | 排序 Sort |
---|---|---|---|---|---|---|
花育9610/T1无膜限制灌水 Huayu9610 non-film limited irrigation | -4.79 | -3.39 | 1.65 | -0.37 | -6.91 | 8 |
冀花18/T1无膜限制灌水 Jihua 18 non-film limited irrigation | -5.81 | 0.54 | 2.96 | -0.64 | -2.95 | 6 |
花育9610/T2无膜中等灌水 Huayu9610 medium irrigation without film | -5.19 | 1.94 | 0.47 | -0.17 | -2.94 | 7 |
冀花18/T2无膜中等灌水 Jihua 18 medium irrigation without film | 3.92 | -2.59 | -2.92 | -0.53 | -2.12 | 4 |
花育9610/T3无膜充分灌水 Huayu9610 full irrigation Without film | -1.51 | 0.79 | -2.79 | 0.78 | -2.72 | 5 |
冀花18/T3无膜充分灌水 Jihua 18 full irrigation Without film | 2.16 | 0.44 | -3.18 | 0.82 | 0.24 | 3 |
花育9610/T4有膜充分灌水 Huayu9610 full irrigation with film | -1.14 | 2.30 | 2.27 | -0.73 | 2.71 | 2 |
冀花18/T4有膜充分灌水 Jihua 18 full irrigation with film | 8.29 | 0.73 | 2.83 | 0.35 | 12.20 | 1 |
[1] | 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116-122. |
ZHANG Liwei, WANG Liaowei. Development status, existing problems and policy recommendations of peanut industry in China[J]. China Oils and Fats, 2020, 45(11): 116-122. | |
[2] | 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2): 161-166. |
LIAO Boshou. A review on progress and prospects of peanut industry in China[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 161-166.
DOI |
|
[3] | 周庆玲. 干旱区不同覆膜方式对马铃薯集雨保墒效果及产量的影响[J]. 现代农业科技, 2019, (15): 73-74. |
ZHOU Qingling. Effects of different mulching methods on water conservation and potato yield in arid areas[J]. Modern Agricultural Science and Technology, 2019, (15): 73-74. | |
[4] | 吕建伟, 李正强, 陈锋, 等. 覆膜栽培对花生出苗及农艺性状的影响[J]. 耕作与栽培, 2015, (5): 22-23, 26. |
LYU Jianwei, LI Zhengqiang, CHEN Feng, et al. The influences of film mulching cultivation on seedling emergence and agronomic traits of peanut[J]. Tillage and Cultivation, 2015, (5): 22-23, 26. | |
[5] | 马登超, 厉广辉, 樊宏. 地膜覆盖对春播花生荚果性状及产量形成的影响[J]. 山东农业科学, 2014, 46(9): 49-52. |
MA Dengchao, LI Guanghui, FAN Hong. Effects of film mulching on pod traits and yield formation of spring peanut[J]. Shandong Agricultural Sciences, 2014, 46(9): 49-52. | |
[6] | Yang D Q, Liu Y, Wang Y, et al. Effects of soil tillage, management practices, and mulching film application on soil health and peanut yield in a continuous cropping system[J]. Frontiers in Microbiology, 2020, 11: 570924. |
[10] | 王一博, 周宇飞, 曹敏建. 双沟覆土压膜栽培对花生生长及产量的影响[J]. 辽宁农业科学, 2021, (3): 41-43. |
WANG Yibo, ZHOU Yufei, CAO Minjian. Effect of double ditch cover and film mulching cultivation on growth and yield of peanut in windy sandy area[J]. Liaoning Agricultural Sciences, 2021, (3): 41-43. | |
[11] | 黄鹏, 李援农, 谷晓博, 等. 覆膜条件下不同施氮量对花生产量和水分利用效率的影响[J]. 节水灌溉, 2018, (12): 104-108. |
HUANG Peng, LI Yuannong, GU Xiaobo, et al. Effects of different nitrogen application quantity under film mulching on yield and water use efficiency[J]. Water Saving Irrigation, 2018, (12): 104-108. | |
[12] |
Zhou L F, Feng H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 540-550.
DOI PMID |
[13] | 于慧佳. 覆膜对高油酸花生光合生理特性和脂肪酸组分的影响[D]. 沈阳: 沈阳农业大学, 2020. |
YU Huijia. Effects of Film Mulching on Photosynthetic Physiological Characteristics and Fatty Acid Formation of Peanut with High Oleic Acid[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[14] |
杨涛, 拥嘎. 覆膜栽培对西藏春油菜生长、产量和品质的影响[J]. 中国农学通报, 2022, 38(18): 52-56.
DOI |
YANG Tao, YONG Ga. Effects of film mulching cultivation on the growth, yield and quality of spring rapeseed in Tibet[J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 52-56.
DOI |
|
[15] | 刘晓光, 范燕, 赵雪飞, 等. 不同覆膜处理对唐山地区花生生理性状和产量的影响[J]. 花生学报, 2021, 50(3): 80-84. |
LIU Xiaoguang, FAN Yan, ZHAO Xuefei, et al. Effects of different film mulching treatments on physiological traits and yield of peanut in Tangshan Area[J]. Journal of Peanut Science, 2021, 50(3): 80-84. | |
[7] | 龚珂宁, 黄炳川, 张楠, 等. 灌溉和种植模式对无膜滴灌棉花幼苗生长及光合特性的影响[J]. 节水灌溉, 2022, (4): 21-26. |
GONG Kening, HUANG Bingchuan, ZHANG Nan, et al. Effects of irrigation quota and seeding density on growth and photosynthetic characteristics of cotton seedlings under non-film drip irrigation[J]. Water Saving Irrigation, 2022, (4): 21-26. | |
[8] | 付晓. 不同种植方式下盐碱地花生土壤盐分运移、生理特性及产量和品质的研究[D]. 乌鲁木齐: 新疆农业大学, 2015. |
FU Xiao. Research of Different Planting Patterns on Soil Salt Movement, physiological Characteristics And Yield And Quality of Peanut Plant in Saline-alkali Soil[D]. Urumqi: Xinjiang Agricultural University, 2015. | |
[9] | 杨同宇. 沈阳地区覆膜栽培条件下的土壤温湿度对花生脂肪酸含量及产量的影响[D]. 沈阳: 沈阳农业大学, 2020. |
YANG Tongyu. Effects of Soil Temperature and Humidity on Fatty Acid Content and Yield of Peanut under Mulching Cultivation in Shenyang[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[16] |
文卿琳, 刘绍东. 南疆无膜滴灌栽培对棉花出苗及生长指标的影响[J]. 农学学报, 2021, 11(6): 19-24, 89.
DOI |
WEN Qinglin, LIU Shaodong. No film mulching drip irrigation in southern Xinjiang: effects on cotton seedling emergence and growth index[J]. Journal of Agriculture, 2021, 11(6): 19-24, 89.
DOI |
|
[17] | 马晓东, 钟小莉, 桑钰. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J]. 生态学报, 2018, 38(20): 7508-7519. |
MA Xiaodong, ZHONG Xiaoli, SANG Yu. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress[J]. Acta Ecologica Sinica, 2018, 38(20): 7508-7519. | |
[18] | 杨焜, 马红媛, 魏继平, 等. 紫花苜蓿和羊草种子出苗和幼苗生长对土壤含水量的响应[J]. 生态学杂志, 2018, 37(4): 1089-1094. |
YANG Kun, MA Hongyuan, WEI Jiping, et al. Responses of seed germination and seedling growth of Medicago sativa and Leymus chinensis to soil moisture[J]. Chinese Journal of Ecology, 2018, 37(4): 1089-1094. | |
[19] | 董喆, 边丽梅, 郑伟, 等. 不同覆膜方式对玉米产量和水分利用效率的影响[J]. 湖北农业科学, 2022, 61(3): 32-35, 95. |
DONG Zhe, BIAN Limei, ZHENG Wei, et al. Effects of different film mulching methods on yield and water use efficiency of maize[J]. Hubei Agricultural Sciences, 2022, 61(3): 32-35, 95. | |
[20] | 吴雁斌, 吕和平, 梁宏杰, 等. 不同覆膜方式与种植密度互作对马铃薯光合特性及产量的影响[J]. 中国瓜菜, 2022, 35(7): 62-68. |
WU Yanbin, LYU Heping, LIANG Hongjie, et al. Interaction of different film mulching methods and planting density affects photosynthetic characteristics and yields of potato[J]. China Cucurbits and Vegetables, 2022, 35(7): 62-68. | |
[21] | 温鹏飞, 袁晨茜, 杨刘燕, 等. 轻度土壤干旱对赤霞珠果实品质的影响[J]. 山西农业科学, 2013, 41(3): 238-242. |
WEN Pengfei, YUAN Chenqian, YANG Liuyan, et al. Effect of light soil drought on the qualities of grape berry[J]. Journal of Shanxi Agricultural Sciences, 2013, 41(3): 238-242. | |
[22] | 李海东, 李文金, 康涛, 等. 花生覆膜和露地栽培条件下不同收获时期对产量及构成因素的影响[J]. 花生学报, 2021, 50(3): 75-79. |
LI Haidong, LI Wenjin, KANG Tao, et al. Effects of different harvest time on yield and its components of peanut under plastic film mulching and open field cultivation[J]. Journal of Peanut Science, 2021, 50(3): 75-79. | |
[23] |
王建国, 张昊, 李林, 等. 施钙与覆膜栽培对缺钙红壤花生干物质生产、熟相、产量构成及品质的影响[J]. 华北农学报, 2018, 33(4): 131-138.
DOI |
WANG Jianguo, ZHANG Hao, LI Lin, et al. Effects of calcium fertilizer and plastic film mulching cultivation on dry matter production, maturity performance, yield components and quality of peanut in red soil under Ca deficiency[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 131-138. |
[1] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
[2] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[3] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
[4] | 刘跃, 贾永红, 张金汕, 于月华, 王润琪, 李丹丹, 石书兵. 滴灌条件下不同高油酸花生品种比较[J]. 新疆农业科学, 2024, 61(6): 1361-1367. |
[5] | 张钊, 张贵龙, 汤秋香, 闫雪影, 张艳军. 有机无机肥配施对潮土麦田肥力和冬小麦产量的影响[J]. 新疆农业科学, 2024, 61(5): 1067-1076. |
[6] | 张艺加, 程平, 王磊, 武胜利. 不同灌溉量对矮化密植苹果树生理特性和苹果产量及品质的影响[J]. 新疆农业科学, 2024, 61(5): 1140-1150. |
[7] | 贾东海, 宋贤明, 顾元国, 李强, 曾幼玲, 苗昊翠, 郭美丽, 侯献飞. 化肥减量配施微生物菌肥对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 781-790. |
[8] | 侯献飞, 宋贤明, 李强, 顾元国, 苗昊翠, 曾幼玲, 郭美丽, 贾东海. 水氮耦合对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 791-803. |
[9] | 宋贤明, 侯献飞, 顾元国, 苗昊翠, 李强, 郭美丽, 曾幼玲, 贾东海. 种植密度和行距对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 804-813. |
[10] | 吴刚, 田阳青, 赵强, 李欣欣, 穆妮热·阿卜杜艾尼, 张家豪, 王文庆, 占东霞, 马春梅. 缩节胺复配不同促进剂对棉花棉铃时空分布和光合特性的影响[J]. 新疆农业科学, 2024, 61(2): 279-287. |
[11] | 毛廷勇, 刘婵, 杨北方, 李亚兵, 周均, 王栋, 陈国栋, 万素梅. 滴灌棉花源库器官对化学打顶的响应特征[J]. 新疆农业科学, 2024, 61(2): 288-299. |
[12] | 郑天翔, 张明明, 雷玉明, 王南楠, 王丽娟. 宽叶荨麻不同部位提取液对小麦幼苗生长和光合特性的影响[J]. 新疆农业科学, 2024, 61(2): 505-513. |
[13] | 汪天玲, 侯献飞, 施俊杰, 孙全喜, 贾东海, 顾元国, 单世华, 苗昊翠, 李强. 67份匍匐型花生种质资源遗传多样性分析[J]. 新疆农业科学, 2024, 61(1): 42-54. |
[14] | 刘海军, 张昊, 王一帆, 陈茂光, 吴凤全, 林涛, 汤秋香. 不同覆盖材料和灌溉量对机采棉产量形成及有效积温生产效率的影响[J]. 新疆农业科学, 2023, 60(9): 2091-2100. |
[15] | 王晓雨, 王小平, 史文宇, 刘美艳, 马健, 郭云鹏, 宋瑞欣, 王清涛. 拔节期冬小麦光合特性、干物质积累和产量对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(9): 2163-2172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||