新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1140-1150.DOI: 10.6048/j.issn.1001-4330.2024.05.012
收稿日期:
2023-10-17
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
程平(1985-),男,安徽怀宁人,副研究员,硕士生导师,研究方向为果树育种与栽培,(E-mail)84966324@qq.com作者简介:
张艺加(1997-),女,新疆石河子人,硕士研究生,研究方向为果树生理,(E-mail)2724730321@qq.com
基金资助:
ZHANG Yijia1(), CHENG Ping2(), WANG Lei3, WU Sheng li1
Received:
2023-10-17
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
CHENG Ping (1985-), male, from Huaining, Anhui,Associate researcher, master, research direction: Breeding of new peach varieties, (E-mail)84966324@qq.com
Supported by:
摘要:
【目的】研究不同滴灌量对苹果生理特性和苹果产量及品质的影响。【方法】以新疆阿克苏地区的矮化密植苹果树为研究对象,设置3种滴灌量处理,即:低水W1(灌溉定额为216 m3/667m2);中水W2(灌溉定额为249 m3/667m2);高水W3(灌溉定额为282 m3/667m2);漫灌为CK(灌溉定额为750 m3/667m2)。利用TDP插针式茎流仪测定苹果树茎流速率、Li-6400便携式光合测定仪测定叶片光合参数、HOBO小型气象站采集气象数据、ECH2O水分探头测定-20、-40、-60和-80 cm土壤含水量;测定苹果产量指标(单果重、纵径、横径、果形指数)和品质指标(可溶性糖、总酸、K、Ca、Na、Mg、Cu、Zn、Fe、Mn含量)。【结果】不同灌溉处理茎流速率表现为CK>W3>W2>W1,不同月份平均茎流速率排序为7月>8月>6月>9月。净光合速率和蒸腾速率均随灌溉量的增加呈先增大后减小的趋势,W2处理的水分利用效率较高。影响苹果树茎流速率的主要气象因子是太阳辐射和大气温度,30~50 cm土层是滴灌灌溉的重要区域。随灌溉量的提高,产量逐渐增加,但W2、W3和CK无显著差异性。灌溉水利用效率随灌溉量增加呈先增大后减小的趋势,W2的灌溉水利用效率最大,较对照CK高出65.59%。W2处理为最佳处理,但在干旱区可以适当多灌溉以提高其产量。【结论】新疆阿克苏地区矮化密植苹果树最佳灌溉处理为W2处理,灌溉定额为249 m3/667m2,全年灌溉次数为11次,7月蒸发量较大应及时灌溉。
中图分类号:
张艺加, 程平, 王磊, 武胜利. 不同灌溉量对矮化密植苹果树生理特性和苹果产量及品质的影响[J]. 新疆农业科学, 2024, 61(5): 1140-1150.
ZHANG Yijia, CHENG Ping, WANG Lei, WU Sheng li. Effects of different irrigation rates on physiological characteristics, yield and quality of dwarfed close-planted apple trees[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1140-1150.
深度 Depth (cm) | 土壤质地 Soil texture | 田间持水量 Field capacity (%) | 容重 Unit weight (g/cm3) | 电导率 Conductivity (us/cm) | 有机质 Organic substance (mg/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Quick-acting potassium (mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|---|---|---|
0~20 | 砂壤土 | 16.54 | 1.34 | 0.62 | 12.90 | 98.43 | 7.76 | 117.99 | 7.84 |
20~40 | 砂壤土 | 19.66 | 1.56 | 0.47 | 13.85 | 99.17 | 6.94 | 97.35 | 8.02 |
40~60 | 砂壤土 | 20.03 | 1.51 | 0.60 | 6.66 | 69.40 | 1.49 | 85.01 | 7.98 |
60~80 | 砂壤土 | 24.69 | 1.22 | 0.25 | 4.57 | 47.91 | 0.73 | 61.25 | 8.06 |
表1 试验地土壤理化性质
Tab.1 Physical and chemical properties in the test site
深度 Depth (cm) | 土壤质地 Soil texture | 田间持水量 Field capacity (%) | 容重 Unit weight (g/cm3) | 电导率 Conductivity (us/cm) | 有机质 Organic substance (mg/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Quick-acting potassium (mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|---|---|---|
0~20 | 砂壤土 | 16.54 | 1.34 | 0.62 | 12.90 | 98.43 | 7.76 | 117.99 | 7.84 |
20~40 | 砂壤土 | 19.66 | 1.56 | 0.47 | 13.85 | 99.17 | 6.94 | 97.35 | 8.02 |
40~60 | 砂壤土 | 20.03 | 1.51 | 0.60 | 6.66 | 69.40 | 1.49 | 85.01 | 7.98 |
60~80 | 砂壤土 | 24.69 | 1.22 | 0.25 | 4.57 | 47.91 | 0.73 | 61.25 | 8.06 |
处理 Treatments | 灌溉历时 Experience time of irrigation (h) | 滴头流量 Dripper flow (L/h) | 单株灌溉量 Irrigation amount per plant(L/株) | 灌溉量 irrigation amount (m3/667m2) | 亩滴灌量 Drip irrigation volume (m3/667m2) | 漫灌量 Flood volume (m3/667m2) | 灌溉定额 Irrigation quota (m3/667m2) |
---|---|---|---|---|---|---|---|
W1 | 6 | 10 | 60 | 6.6 | 66 | 150 | 216 |
W2 | 9 | 10 | 90 | 9.9 | 99 | 150 | 249 |
W3 | 12 | 10 | 120 | 13.2 | 132 | 150 | 282 |
CK | 年灌溉5次,即在4月中、6月底、7月底、8月底、10月底各灌溉1次,每次灌溉量为150m3/667m2 | 750 |
表2 灌溉处理水平
Tab.2 Irrigation treatment level
处理 Treatments | 灌溉历时 Experience time of irrigation (h) | 滴头流量 Dripper flow (L/h) | 单株灌溉量 Irrigation amount per plant(L/株) | 灌溉量 irrigation amount (m3/667m2) | 亩滴灌量 Drip irrigation volume (m3/667m2) | 漫灌量 Flood volume (m3/667m2) | 灌溉定额 Irrigation quota (m3/667m2) |
---|---|---|---|---|---|---|---|
W1 | 6 | 10 | 60 | 6.6 | 66 | 150 | 216 |
W2 | 9 | 10 | 90 | 9.9 | 99 | 150 | 249 |
W3 | 12 | 10 | 120 | 13.2 | 132 | 150 | 282 |
CK | 年灌溉5次,即在4月中、6月底、7月底、8月底、10月底各灌溉1次,每次灌溉量为150m3/667m2 | 750 |
月份 Month | 处理 Treatments | 茎流启动时间 Stem flow start-up time | 茎流持续时间 Duration of stem flow | 茎流到达 峰值时间 Peak time of stem flow | 峰值 Peak value (cm/h) | 平均茎流速率 Average stem flow rate (cm/h) |
---|---|---|---|---|---|---|
6月 June | W1 | 9:00-9:30 | 13 | 14:00 | 7.56 | 3.18 |
W2 | 9:00-9:30 | 13 | 13:00 | 10.27 | 4.34 | |
W3 | 8:30-9:00 | 13 | 13:00 | 12.27 | 5.66 | |
CK | 8:30-9:00 | 13.5 | 13:00 | 15.39 | 6.90 | |
7月 July | W1 | 8:00-8:30 | 15 | 14:30 | 8.69 | 3.44 |
W2 | 8:00-8:30 | 15 | 13:30 | 12.60 | 5.31 | |
W3 | 7:30-8:00 | 15.5 | 13:00 | 14.56 | 6.63 | |
CK | 7:00-7:30 | 16 | 13:00 | 16.85 | 7.81 | |
8月August | W1 | 8:30-9:00 | 13 | 13:30 | 7.99 | 2.74 |
W2 | 8:00-8:30 | 14 | 13:00 | 12.65 | 4.88 | |
W3 | 7:30-8:00 | 15 | 13:00 | 13.47 | 5.72 | |
CK | 7:00-7:30 | 16 | 13:00 | 16.18 | 6.85 | |
9月 September | W1 | 10:00-10:30 | 11 | 15:30 | 8.32 | 2.36 |
W2 | 9:30-10:00 | 12 | 15:00 | 11.94 | 3.42 | |
W3 | 9:00-9:30 | 13.5 | 15:00 | 12.95 | 4.57 | |
CK | 8:30-9:00 | 14 | 15:00 | 16.43 | 6.01 |
表3 苹果树茎流速率月际动态变化规律
Tab.3 Monthly dynamic change of stem flow rate of red meat apple
月份 Month | 处理 Treatments | 茎流启动时间 Stem flow start-up time | 茎流持续时间 Duration of stem flow | 茎流到达 峰值时间 Peak time of stem flow | 峰值 Peak value (cm/h) | 平均茎流速率 Average stem flow rate (cm/h) |
---|---|---|---|---|---|---|
6月 June | W1 | 9:00-9:30 | 13 | 14:00 | 7.56 | 3.18 |
W2 | 9:00-9:30 | 13 | 13:00 | 10.27 | 4.34 | |
W3 | 8:30-9:00 | 13 | 13:00 | 12.27 | 5.66 | |
CK | 8:30-9:00 | 13.5 | 13:00 | 15.39 | 6.90 | |
7月 July | W1 | 8:00-8:30 | 15 | 14:30 | 8.69 | 3.44 |
W2 | 8:00-8:30 | 15 | 13:30 | 12.60 | 5.31 | |
W3 | 7:30-8:00 | 15.5 | 13:00 | 14.56 | 6.63 | |
CK | 7:00-7:30 | 16 | 13:00 | 16.85 | 7.81 | |
8月August | W1 | 8:30-9:00 | 13 | 13:30 | 7.99 | 2.74 |
W2 | 8:00-8:30 | 14 | 13:00 | 12.65 | 4.88 | |
W3 | 7:30-8:00 | 15 | 13:00 | 13.47 | 5.72 | |
CK | 7:00-7:30 | 16 | 13:00 | 16.18 | 6.85 | |
9月 September | W1 | 10:00-10:30 | 11 | 15:30 | 8.32 | 2.36 |
W2 | 9:30-10:00 | 12 | 15:00 | 11.94 | 3.42 | |
W3 | 9:00-9:30 | 13.5 | 15:00 | 12.95 | 4.57 | |
CK | 8:30-9:00 | 14 | 15:00 | 16.43 | 6.01 |
处理 Treatments | 回归方程 Regression equation | R2 | 显著性 Signifi- cance |
---|---|---|---|
W1 | V=0.625Rs+0.417Ta | 0.931 | 0.000 |
W2 | V=0.676Rs+0.469Ta | 0.963 | 0.000 |
W3 | V=0.637Rs+0.458Ta | 0.948 | 0.000 |
CK | V=0.644Rs+0.435Ta | 0.943 | 0.000 |
表4 日均茎流速率和气象因子逐步回归方程
Tab.4 Average daily stem flow rate and meteorological factor regression equation
处理 Treatments | 回归方程 Regression equation | R2 | 显著性 Signifi- cance |
---|---|---|---|
W1 | V=0.625Rs+0.417Ta | 0.931 | 0.000 |
W2 | V=0.676Rs+0.469Ta | 0.963 | 0.000 |
W3 | V=0.637Rs+0.458Ta | 0.948 | 0.000 |
CK | V=0.644Rs+0.435Ta | 0.943 | 0.000 |
图6 灌水前后各1 d不同灌溉量下土壤体积含水量垂直变化
Fig.6 changes of vertical variation of soil volumetric water content under different irrigation rates one day before and after irrigation
处理 Treatments | 回归方程 Regression equation | R2 | 显著性 Significance |
---|---|---|---|
W1 | V=3.175X2+9.415 | 0.535 | 0.001 |
W2 | V=8.693X2-14.527 | 0.697 | 0.000 |
W3 | V=4.931X2-5.621 | 0.672 | 0.001 |
CK | V=5.316X2+4.672 | 0.683 | 0.001 |
表5 不同灌溉量日均茎流速率和土壤体积含水量逐步回归方程
Tab.5 Average daily stem flow rate and soil volumetric water content under different irrigation amounts
处理 Treatments | 回归方程 Regression equation | R2 | 显著性 Significance |
---|---|---|---|
W1 | V=3.175X2+9.415 | 0.535 | 0.001 |
W2 | V=8.693X2-14.527 | 0.697 | 0.000 |
W3 | V=4.931X2-5.621 | 0.672 | 0.001 |
CK | V=5.316X2+4.672 | 0.683 | 0.001 |
指标 Indexes | W1 | W2 | W3 | 对照 CK |
---|---|---|---|---|
单果重Single fruit weight(g) | 165.11±4.71c | 173.31±4.84bc | 175.90±4.97b | 185.13±3.41a |
果形指数Fruit shape index | 0.863±0.01b | 0.871±0.05ab | 0.911±0.02ab | 0.959±0.01a |
产量Yield(kg/667m2) | 1 437.26±37.50b | 1 692.53±15.91a | 1 707.93±15.61a | 1 755.60±128.04a |
灌溉水利用效率 Effciency of irrigation water use(kg/m3) | 6.65±0.17a | 6.80±0.06a | 6.06±0.06b | 2.34±0.17c |
可溶性固形物Soluble solids | 15.13±0.3b | 16.06±0.5a | 13.76±0.2c | 13.73±0.2c |
总酸Total acid(g/kg) | 6.23±0.21a | 6.32±0.31a | 6.49±0.42a | 5.41±0.09b |
可溶性糖含量Soluble sugar content | 7.96%±0.71%b | 11.75%±1.26%a | 9.54%±0.14%b | 9.91±0.55a |
钾K(mg/100g) | 127.81±0.2c | 165.83±1.85a | 145.61±0.67b | 135.85±6.55c |
钠Na(mg/100g) | 20.03±3.05b | 27.49±1.82a | 24.23±1.65ab | 20.32±2.30b |
钙Ca(mg/100g) | 172.40±18.53c | 342.13±1.72a | 256.37±16.12b | 184.91±10.04bc |
镁Mg(mg/100g) | 65.97±8.40b | 83.04±2.16a | 74.41±1.92ab | 66.08±3.46b |
铜Cu(mg/100g) | 0.43±0.01c | 0.73±0.02a | 0.57±0.05b | 0.47±0.03c |
锌Zn(mg/100g) | 2.11±0.08c | 4.58±0.47a | 4.13±0.23ab | 3.47±0.02b |
铁Fe(mg/100g) | 6.22±0.03c | 7.55±0.18a | 7.21±0.05a | 6.64±0.16b |
锰Mn(mg/100g) | 1.48±0.08c | 2.03±0.14a | 1.78±0.07ab | 1.71±0.03bc |
表6 不同灌溉量下果实产量和品质变化
Tab.6 Changes of different irrigation amount on fruit yield and quality
指标 Indexes | W1 | W2 | W3 | 对照 CK |
---|---|---|---|---|
单果重Single fruit weight(g) | 165.11±4.71c | 173.31±4.84bc | 175.90±4.97b | 185.13±3.41a |
果形指数Fruit shape index | 0.863±0.01b | 0.871±0.05ab | 0.911±0.02ab | 0.959±0.01a |
产量Yield(kg/667m2) | 1 437.26±37.50b | 1 692.53±15.91a | 1 707.93±15.61a | 1 755.60±128.04a |
灌溉水利用效率 Effciency of irrigation water use(kg/m3) | 6.65±0.17a | 6.80±0.06a | 6.06±0.06b | 2.34±0.17c |
可溶性固形物Soluble solids | 15.13±0.3b | 16.06±0.5a | 13.76±0.2c | 13.73±0.2c |
总酸Total acid(g/kg) | 6.23±0.21a | 6.32±0.31a | 6.49±0.42a | 5.41±0.09b |
可溶性糖含量Soluble sugar content | 7.96%±0.71%b | 11.75%±1.26%a | 9.54%±0.14%b | 9.91±0.55a |
钾K(mg/100g) | 127.81±0.2c | 165.83±1.85a | 145.61±0.67b | 135.85±6.55c |
钠Na(mg/100g) | 20.03±3.05b | 27.49±1.82a | 24.23±1.65ab | 20.32±2.30b |
钙Ca(mg/100g) | 172.40±18.53c | 342.13±1.72a | 256.37±16.12b | 184.91±10.04bc |
镁Mg(mg/100g) | 65.97±8.40b | 83.04±2.16a | 74.41±1.92ab | 66.08±3.46b |
铜Cu(mg/100g) | 0.43±0.01c | 0.73±0.02a | 0.57±0.05b | 0.47±0.03c |
锌Zn(mg/100g) | 2.11±0.08c | 4.58±0.47a | 4.13±0.23ab | 3.47±0.02b |
铁Fe(mg/100g) | 6.22±0.03c | 7.55±0.18a | 7.21±0.05a | 6.64±0.16b |
锰Mn(mg/100g) | 1.48±0.08c | 2.03±0.14a | 1.78±0.07ab | 1.71±0.03bc |
[1] |
刘璐, 郭梁, 王景红, 等. 中国北方苹果主产地苹果物候期对气候变暖的响应[J]. 应用生态学报, 2020, 31(3):845-852.
DOI |
LIU Lu, GUO Liang, WANG Jinghong, et al. Phenological responses of apple tree to climate warming in the main apple production areas in northern China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 845-852.
DOI |
|
[2] | 董铁, 王红平, 孙文泰, 等. 不同矮化中间砧对‘长富2号’苹果生长特性、叶片生理及果实品质的影响[J]. 果树学报, 2020, 37(12):1846-1855. |
DONG Tie, WANG Hongping, SUN Wentai, et al. Effects of different dwarfing interstocks on tree growth characteristics, leaf physiology and fruit quality of‘Nagano Fuji No.2’apple[J]. Journal of Fruit Science, 2020, 37(12): 1846-1855. | |
[3] | Foster T M, Watson A E, Hooijdonk B M, et al. Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks[J]. Tree Genetics and Genomes, 2014, 10(1): 189-202. |
[4] | 马慧丽, 吕德国, 秦嗣军, 等. 寒富苹果不同限根栽培植株的光合特性比较[J]. 沈阳农业大学学报, 2007, 38(6):792-795. |
MA Huili, LV Deguo, QIN Sijun, et al. Photosynthetic characteristics of hanfu apple tree in different root-zone space[J]. Journal of Shenyang Agricultural University, 2007, 38(6): 792-795. | |
[5] | 李中杰. 不同灌溉技术和灌水量的陕北山地苹果节水增产提质效应研究[D]. 西安: 西安理工大学, 2022. |
LI Zhongjie. Effect of different irrigation techniques and lrrigation amountson water saving, yield increase and quality improvement ofmountain apple in northern of shaanxi[D]. Xi’an: Xi’an University of Technology, 2022. | |
[6] | Du S Q, Kang S Z, Li F S, et al. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China[J]. Agricultural Water Management, 2017, 179: 184-192. |
[7] | 张纪圆, 赵经华, 庞毅, 等. 调亏灌溉对滴灌核桃树耗水规律及产量的影响[J]. 西北农业学报, 2021, 30(11):1674-1684. |
ZHANG Jiyuan, ZHAO Jinghua, PANG Yi, et al. Effects of regulated deficit irrigation on water consumptionand yield of walnut trees under drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(11): 1674-1684. | |
[8] | 胡宏远, 王静, 李红英, 等. 调亏灌溉对贺兰山东麓赤霞珠葡萄主干茎流规律及品质的影响[J]. 江苏农业学报, 2023, 39(3):798-806. |
HU Hongyuan, WANG Jing, LI Hongying, et al. Effects of regulated deficit irrigation on stem flow and quality of cabernet sauvignon grape in eastern foot of helan mountain[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(3): 798-806. | |
[9] | 赵先飞, 张馨予, 于国康, 等. 短枝富士苹果不同负载和灌水量对新梢生长、产量和灌水利用效率的影响[J/OL]. 果树学报, 2023,1-14[2023-09-11]. |
ZHAO Xianfei, ZHANG Xinyu, YU Guokang, et al. Effect of different loads and irrigation amounts on new shoot growth, yield and irrigation water use efficiency of SpurFuji apples[J/OL]. Journal of Fruit Science, 2023, 1-14[2023-09-11]. | |
[10] | 武阳, 王伟, 雷廷武, 等. 调亏灌溉对滴灌成龄香梨果树生长及果实产量的影响[J]. 农业工程学报, 2012, 28(11):118-124. |
WU Yang, WANG Wei, LEI Tingwu, et al. Impact of regulated deficit irrigation on growth and fruit yield of mature fragrant pear trees under trickle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 118-124. | |
[11] | 程福厚, 李绍华, 孟昭清. 调亏灌溉条件下鸭梨营养生长、产量和果实品质反应的研究[J]. 果树学报, 2003, 20(1):22-26. |
CHENG Fuhou, LI Shaohua, MENG Zhaoqing. Study on the effect of regulated deficit irrigation on the vegetativegrowth, cropping and fruit quality of yali pear variety[J]. Journal of Fruit Science, 2003, 20(1): 22-26. | |
[12] | 黄兴法, 李光永, 王小伟, 等. 充分灌与调亏灌溉条件下苹果树微喷灌的耗水量研究[J]. 农业工程学报, 2001, 17(5):43-47. |
HUANG Xingfa, LI Guangyong, WANG Xiaowei, et al. Water use of micro-sprinkler irrigated apple trees under full irrigation and regulated deficit irrigation[J]. Transactions of the CSAE, 2001, 17(5): 43-47. | |
[13] | 安六世. 黄土高原浅山干旱区矮化密植苹果园改变土壤团粒结构增加保肥保水能力试验[J]. 山西果树, 2018,(3):15-17. |
AN Liushi. Experiment on improving soil aggregate structure toincrease water conservation and fertilizer capacity ofsoil in dwarf dense apple orchard of arid mountain area in loess plateau[J]. Shanxi Fruits, 2018, (3): 15-17. | |
[14] | 仇群伊, 郭向红, 孙西欢, 等. 热技术茎流计测定植物蒸腾耗水的应用[J]. 节水灌溉, 2013,(12):70-73,78. |
CHOU Qunyi, GUO Xianghong, SUN Xihuan, et al. Application of thermal methods sap flow gauge inmeasurement of plant transpiration water[J]. Water Saving Irrigation, 2013, (12): 70-73,78. | |
[15] | 尹铄今. 三个品种苹果果实大小与品质的关系研究[D]. 泰山: 山东农业大学, 2023. |
YIN Shuojin. Relationship between fruit size and quality of three apple varieties[D]. Taian: Shandong Agricultural University, 2023. | |
[16] | 韩路, 王海珍, 徐雅丽, 等. 灰胡杨蒸腾速率对气孔导度和水汽压差的响应[J]. 干旱区资源与环境, 2016, 30(8):193-197. |
HAN Lu, WANG Haizhen, XU Yali, et al. Responses of transpiration rate of Populus pruinosa to stomatal conductance and vapor pressure deficient[J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 193-197. | |
[17] | 曹辉, 杨莹攀, 王洪博, 等. 南疆矮砧密植滴灌苹果生长、耗水及产量研究[J]. 果树学报, 2021, 38(5):681-691. |
CAO Hui, YANG Yingpan, WANG Hongbo, et al. Study on the growth, water consumption and yield of drip-irrigated apple trees with dwarfing rootstock and close planting in South Xinjiang[J]. Journal of Fruit Science, 2021, 38(5): 681-691. | |
[18] | 万发, 吴文勇, 喻黎明, 等. 引黄灌区苹果树液流规律及与微气象因子响应关系[J]. 中国水土保持科学, 2021, 19(1):20-27. |
WANG Fa, WU Wenyong, YU Liming, et al. Dynamics of sap flow of apple trees in Yellow River irrigation areas and their responses to micrometeorological factors[J]. Science of Soil and Water Conservation, 2021, 19(1): 20-27. | |
[19] | 李佳旸. 黄土高原山地苹果园土壤水分动态及蒸散研究[D]. 杨凌: 西北农林科技大学, 2018. |
LI Jiayang. Soil water dynamics and evapotranspiration of hilly apple orchard in the loess plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2018. | |
[20] | 王力, 邵明安, 张青峰. 陕北黄土高原土壤干层的分布和分异特征[J]. 应用生态学报, 2004, 15(3):436-442. |
WANG Li, SAHO Mingan, ZHANG Qingfeng. Distribution and characters of soil dry layer in north Shaanxi Loess Plateau[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 436-442. | |
[21] |
刘星, 曹红霞, 廖阳, 等. 滴灌模式对苹果光合特性、产量及灌溉水利用的影响[J]. 中国农业科学, 2021, 54(15):3264-3278.
DOI |
LIU Xing, CAO Hongxia, LIAO Yang, et al. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple[J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
DOI |
|
[22] | 周罕觅, 牛晓丽, 燕辉, 等. 水肥耦合对苹果幼树生长及光合特性的影响[J]. 河南农业科学, 2019, 48(10):112-119. |
ZHOU Hanmi, NIU Xiaoli, YAN Hui, et al. Effects of water and fertilizer coupling on growth and photosynthetic characteristics of young apple tree[J]. Journal of Henan Agricultural Sciences, 2019, 48(10): 112-119. | |
[23] |
曹辉, 王洪博, 张楠, 等. 矮砧密植苹果光合特性及产量对水分的响应[J]. 新疆农业科学, 2022, 59(6):1409-1417.
DOI |
CAO Hui, WANG Hongbo, ZHANG Nan, et al. Photosynthetic characteristics and yield response to water content of apple under close planting on dwarf rootstocks in Southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1409-1417.
DOI |
|
[24] | ALI S, XU Y, MA X, et al. Improvement in winter wheat productivity through regulating PS II photochemistry, photosynthesis and chlorophyll fluorescence under deficit irrigation conditions[J]. Journal of Integrative Agriculture, 2022, 21(3): 654-665. |
[25] | 钟韵, 费良军, 曾健, 等. 根域水分亏缺对涌泉灌苹果幼树产量品质和节水的影响[J]. 农业工程学报, 2019, 35(21):78-87. |
ZHONG Yun, FEI Liangjun, ZENG Jian, et al. Effects of root-zone water deficit on yield, quality and water use efficiency of young apple trees under surge-root irrigation[J]. Transactions of Agricultural Engineering, 2019, 35(21): 78-87. | |
[26] | 刘贤赵, 宿庆, 孙海燕. 根系分区交替灌溉不同交替周期对苹果树生长、产量及品质的影响[J]. 生态学报, 2010, 30(18):4881-4888. |
LIU Xianzhao, SU Qing, SUN Haiyan. Effects of different alternate cycling on the growth, yield and quality of apple trees under conditions of alternate partial root-zone irrigation[J]. Acta Ecologica Sinica, 2010, 30(18): 4881-4888. | |
[27] | 杨启良, 张富仓. 根区不同灌溉方式对苹果幼苗水流阻力的影响[J]. 应用生态学报, 2009, 20(1):128-134. |
YANG Qiliang, ZHANG Fucang. Effects of different root zone irrigation modes on apple seedlings hydraulic resistance[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 128-134.
PMID |
|
[28] | 刘威宏, 王延平, 韩明玉, 等. 根区滴灌对干旱山地苹果树生长发育和结实的影响[J]. 灌溉排水学报, 2016, 35(7):40-45,77. |
LIU Weihong, WANG Yanping, HAN Mingyu, et al. Effect of root-area trickle-irrigation on growth and development of apple trees at arid hilly region[J]. Journal of Irrigation and Drainage, 2016, 35(7): 40-45,77. |
[1] | 张振飞, 郭靖, 颜安, 侯正清, 袁以琳, 肖淑婷, 孙哲. 多光谱无人机不同飞行高度下苹果树高的提取[J]. 新疆农业科学, 2024, 61(7): 1710-1716. |
[2] | 耿松毅, 孙洪涛, 赵伟琦, 王梅, 芦屹, 马荣. 苹果树腐烂病发生及新型防治药剂筛选[J]. 新疆农业科学, 2024, 61(6): 1461-1467. |
[3] | 张振飞, 郭靖, 颜安, 袁以琳, 肖淑婷, 侯正清, 孙哲. 基于多光谱无人机不同飞行高度下苹果树冠幅信息的提取[J]. 新疆农业科学, 2024, 61(6): 1468-1476. |
[4] | 施俊杰, 侯献飞, 于月华, 李强, 苗昊翠, 贾东海, 顾元国, 汪天玲. 不同覆盖模式与补充灌溉对花生光合特性及干物质积累速率的影响[J]. 新疆农业科学, 2024, 61(5): 1122-1130. |
[5] | 吴刚, 田阳青, 赵强, 李欣欣, 穆妮热·阿卜杜艾尼, 张家豪, 王文庆, 占东霞, 马春梅. 缩节胺复配不同促进剂对棉花棉铃时空分布和光合特性的影响[J]. 新疆农业科学, 2024, 61(2): 279-287. |
[6] | 毛廷勇, 刘婵, 杨北方, 李亚兵, 周均, 王栋, 陈国栋, 万素梅. 滴灌棉花源库器官对化学打顶的响应特征[J]. 新疆农业科学, 2024, 61(2): 288-299. |
[7] | 郑天翔, 张明明, 雷玉明, 王南楠, 王丽娟. 宽叶荨麻不同部位提取液对小麦幼苗生长和光合特性的影响[J]. 新疆农业科学, 2024, 61(2): 505-513. |
[8] | 刘海军, 张昊, 王一帆, 陈茂光, 吴凤全, 林涛, 汤秋香. 不同覆盖材料和灌溉量对机采棉产量形成及有效积温生产效率的影响[J]. 新疆农业科学, 2023, 60(9): 2091-2100. |
[9] | 王晓雨, 王小平, 史文宇, 刘美艳, 马健, 郭云鹏, 宋瑞欣, 王清涛. 拔节期冬小麦光合特性、干物质积累和产量对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(9): 2163-2172. |
[10] | 马明杰, 赵经华, 李冬民, 杨胜春, 王克贤, 李池. 不同灌溉方式对苜蓿土壤水分与灌溉水利用效率的影响[J]. 新疆农业科学, 2023, 60(9): 2306-2313. |
[11] | 韩守安, 王敏, 麦合木提·图如普, 谢辉, 艾尔买克·才卡斯木, 刘佳乐, 张雯, 潘明启. 不同光质处理对赤霞珠葡萄叶片光合特性及果实品质的影响[J]. 新疆农业科学, 2023, 60(8): 1894-1903. |
[12] | 朱学慧, 张雯, 马云龙, 何鹏飞, 韩守安, 王敏, 田嘉, 谢辉. 不同生态环境下葡萄光合特性差异性[J]. 新疆农业科学, 2023, 60(8): 1913-1921. |
[13] | 汤东, 安玉光, 程平, 李宏, 杨建军, 王凯. 天山北坡前山带典型灌木光合特性对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(6): 1531-1539. |
[14] | 申莹莹, 张巨松, 彭增莹, 段松江, 李宗润, 吴一帆. 缩节胺复配打顶剂对机采棉冠层结构、光合特性及产量的影响[J]. 新疆农业科学, 2023, 60(5): 1110-1117. |
[15] | 封帆, 谢开云, 艾比布拉·伊马木, 万江春. 果园生草对苹果园杂草控制、土壤养分及果树营养状况的影响[J]. 新疆农业科学, 2023, 60(4): 982-991. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||