新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1160-1171.DOI: 10.6048/j.issn.1001-4330.2024.05.014
刘钧庆1,2(), 梁国成3, 张欣4, 王庆勇4, 赵经华1,2()
收稿日期:
2023-09-27
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
赵经华(1979-),男,新疆奇台人,教授,博士生导师,研究方向为节水灌溉,(E-mail)105512275@qq.com作者简介:
刘钧庆(1994-),男,河北沧州人,硕士研究生,研究方向为灌溉节水,(E-mail)1013835377@qq.com
基金资助:
LIU Junqing1,2(), LIANG Guocheng3, ZHANG Xin4, WANG Qingyong4, ZHAO Jinghua1,2()
Received:
2023-09-27
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
Zhao Jinghua (1979-), male, from Qitai, Xinjiang, professor, doctoral supervisor, research direction: water-saving irrigation theory and efficient crop water use,(E-mail)105512275@qq.com
Supported by:
摘要:
【目的】分析小于2 mm的滴灌核桃有效吸水根系分布特性,建立有效根长密度函数,研究不同调亏灌溉对核桃树根系空间分布特性,为滴灌核桃精准调亏灌溉提供理论依据。【方法】以14年生温185核桃树为试材,采用30 cm×20 cm×20 cm的分段分层法,取样分析有效吸水根系(d<2 mm)分布特征,研究调亏灌溉对滴灌核桃树有效根系空间分布的影响。【结果】在不同调亏灌溉处理中,W0、W3、W4的核桃树有效总根长分布总体变化趋势表现为单峰曲线,且各个调亏处理在20~40 cm有效总根长最大,分别为50 959、74 067、55 678 cm。不同处理下垂直方向根长密度一维符合指数分布,且水平方向根长密度符合多项式分布。W0、W3、W4各处理有效根长均表现出土层深度在20~40 cm,在距离核桃树行向30~60 cm处最大,分别为11 794、22 753、14 119 cm。【结论】不同调亏灌溉处理下,滴灌核桃树根系有效生长密度表现为W3>W4>W0,调亏滴灌灌溉模式使核桃吸水根系更靠近地表生长。
中图分类号:
刘钧庆, 梁国成, 张欣, 王庆勇, 赵经华. 调亏灌溉对滴灌核桃树根系空间分布特征的影响[J]. 新疆农业科学, 2024, 61(5): 1160-1171.
LIU Junqing, LIANG Guocheng, ZHANG Xin, WANG Qingyong, ZHAO Jinghua. Study on spatial distribution characteristics of walnut root system under regulated deficit drip irrigation[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1160-1171.
生育期 Growth Period | 时间 Time(M/D) | W0 | W1 | W2 | W3 | W4 |
---|---|---|---|---|---|---|
萌芽期(Ⅰ) Germination stage (Ⅰ) | 4/11-4/27 | ETC | ETC | ETC | 50%ETC | 75%ETC |
开花坐果期(Ⅱ) Flowering and fruiting period (Ⅱ) | 4/28-5/25 | ETC | 50%ETc | 75%ETC | 50%ETc | 75%ETC |
果实膨大期(Ⅲ) Fruit Expansion Stage (Ⅲ) | 5/26-6/23 | ETC | 75%ETC | ETC | 50%ETC | 75%ETC |
硬核期(Ⅳ) Hard Core Stage (Ⅳ) | 6/24-7/19 | ETC | ETC | ETC | ETC | ETC |
油脂转化期(Ⅴ) Oil conversion period (Ⅴ) | 7/20-8/31 | ETC | ETC | ETC | ETC | ETC |
成熟期(Ⅵ) Maturity period (Ⅵ) | 9/01-9/25 | ETC | ETC | ETC | ETC | ETC |
表1 核桃调亏灌溉处理
Tab.1 regulated deficit irrigation schedule of walnut
生育期 Growth Period | 时间 Time(M/D) | W0 | W1 | W2 | W3 | W4 |
---|---|---|---|---|---|---|
萌芽期(Ⅰ) Germination stage (Ⅰ) | 4/11-4/27 | ETC | ETC | ETC | 50%ETC | 75%ETC |
开花坐果期(Ⅱ) Flowering and fruiting period (Ⅱ) | 4/28-5/25 | ETC | 50%ETc | 75%ETC | 50%ETc | 75%ETC |
果实膨大期(Ⅲ) Fruit Expansion Stage (Ⅲ) | 5/26-6/23 | ETC | 75%ETC | ETC | 50%ETC | 75%ETC |
硬核期(Ⅳ) Hard Core Stage (Ⅳ) | 6/24-7/19 | ETC | ETC | ETC | ETC | ETC |
油脂转化期(Ⅴ) Oil conversion period (Ⅴ) | 7/20-8/31 | ETC | ETC | ETC | ETC | ETC |
成熟期(Ⅵ) Maturity period (Ⅵ) | 9/01-9/25 | ETC | ETC | ETC | ETC | ETC |
土层 Soil layer (cm) | 密度 Density (g/cm3) | 土壤粒径比例Soil particle size ratio (%) | 土壤性质 Soil properties | |||
---|---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | 0.05~2 mm | >2 mm | |||
0~20 | 1.38 | 7.0 | 56.5 | 36.5 | 0 | 粉砂壤土 |
20~40 | 1.42 | 7.2 | 67.9 | 24.9 | 0 | 粉砂壤土 |
40~60 | 1.40 | 2.9 | 15.8 | 81.3 | 0 | 壤砂土 |
60~80 | 1.38 | 0.1 | 1.7 | 98.2 | 0 | 细砂 |
80~100 | 1.35 | 0.2 | 8.0 | 91.8 | 0 | 细砂 |
表2 土壤颗粒
Tab.2 Soil particles
土层 Soil layer (cm) | 密度 Density (g/cm3) | 土壤粒径比例Soil particle size ratio (%) | 土壤性质 Soil properties | |||
---|---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | 0.05~2 mm | >2 mm | |||
0~20 | 1.38 | 7.0 | 56.5 | 36.5 | 0 | 粉砂壤土 |
20~40 | 1.42 | 7.2 | 67.9 | 24.9 | 0 | 粉砂壤土 |
40~60 | 1.40 | 2.9 | 15.8 | 81.3 | 0 | 壤砂土 |
60~80 | 1.38 | 0.1 | 1.7 | 98.2 | 0 | 细砂 |
80~100 | 1.35 | 0.2 | 8.0 | 91.8 | 0 | 细砂 |
土层深度 Soil depth (cm) | 相对土层深度 Relative soil depth | 有效根长密度 Effective root length density (cm/cm3) | 相对有效根长密度 Relative effective root length density | ||||
---|---|---|---|---|---|---|---|
W0 | W3 | W4 | W0 | W3 | W4 | ||
20 | 0.2 | 0.051 | 0.088 | 0.079 | 0.205 | 0.516 | 0.427 |
40 | 0.3 | 0.123 | 0.247 | 0.186 | 0.721 | 1.000 | 1.000 |
60 | 0.5 | 0.170 | 0.130 | 0.129 | 1.000 | 0.527 | 0.698 |
80 | 0.7 | 0.075 | 0.040 | 0.071 | 0.440 | 0.160 | 0.384 |
100 | 0.8 | 0.052 | 0.005 | 0.041 | 0.309 | 0.021 | 0.219 |
120 | 1.0 | 0.066 | 0.022 | 0.039 | 0.390 | 0.090 | 0.212 |
表3 核桃树垂直方向根长密度分布
Tab.3 Vertical root length density distribution of walnut tree
土层深度 Soil depth (cm) | 相对土层深度 Relative soil depth | 有效根长密度 Effective root length density (cm/cm3) | 相对有效根长密度 Relative effective root length density | ||||
---|---|---|---|---|---|---|---|
W0 | W3 | W4 | W0 | W3 | W4 | ||
20 | 0.2 | 0.051 | 0.088 | 0.079 | 0.205 | 0.516 | 0.427 |
40 | 0.3 | 0.123 | 0.247 | 0.186 | 0.721 | 1.000 | 1.000 |
60 | 0.5 | 0.170 | 0.130 | 0.129 | 1.000 | 0.527 | 0.698 |
80 | 0.7 | 0.075 | 0.040 | 0.071 | 0.440 | 0.160 | 0.384 |
100 | 0.8 | 0.052 | 0.005 | 0.041 | 0.309 | 0.021 | 0.219 |
120 | 1.0 | 0.066 | 0.022 | 0.039 | 0.390 | 0.090 | 0.212 |
距树干 水平距离 Horizontal distance from tree trunk(cm) | 相对水平距离 Relative horizontal distance | 有效根长密度 Effective root length density (cm/cm3) | 相对有效根长密度 Relative effective root length density | ||||
---|---|---|---|---|---|---|---|
W0 | W3 | W4 | W0 | W3 | W4 | ||
30 | 0.2 | 0.061 | 0.086 | 0.082 | 0.584 | 0.704 | 0.719 |
60 | 0.4 | 0.104 | 0.123 | 0.113 | 1.000 | 1.000 | 1.000 |
90 | 0.6 | 0.093 | 0.112 | 0.106 | 0.890 | 0.914 | 0.934 |
120 | 0.8 | 0.091 | 0.083 | 0.089 | 0.875 | 0.677 | 0.782 |
150 | 1 | 0.083 | 0.050 | 0.069 | 0.792 | 0.408 | 0.607 |
表4 核桃树水平方向根长密度分布
Tab.4 Distribution of root length density in horizontal direction of walnut tree
距树干 水平距离 Horizontal distance from tree trunk(cm) | 相对水平距离 Relative horizontal distance | 有效根长密度 Effective root length density (cm/cm3) | 相对有效根长密度 Relative effective root length density | ||||
---|---|---|---|---|---|---|---|
W0 | W3 | W4 | W0 | W3 | W4 | ||
30 | 0.2 | 0.061 | 0.086 | 0.082 | 0.584 | 0.704 | 0.719 |
60 | 0.4 | 0.104 | 0.123 | 0.113 | 1.000 | 1.000 | 1.000 |
90 | 0.6 | 0.093 | 0.112 | 0.106 | 0.890 | 0.914 | 0.934 |
120 | 0.8 | 0.091 | 0.083 | 0.089 | 0.875 | 0.677 | 0.782 |
150 | 1 | 0.083 | 0.050 | 0.069 | 0.792 | 0.408 | 0.607 |
行向距离 Direction distance (cm) | 土层深度Soil depth(cm) | ||||||
---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | ||
W0 | 30 | 4 632 | 8 774 | 11 615 | 5 197 | 3 450 | 4 640 |
60 | 5 672 | 8 921 | 11 794 | 5 840 | 3 704 | 5 538 | |
90 | 3 171 | 7 854 | 11 001 | 4 144 | 2 901 | 4 128 | |
120 | 1 342 | 6 739 | 8 696 | 3 990 | 2 830 | 3 700 | |
150 | 343 | 4 468 | 7 853 | 3 259 | 2 858 | 1 873 | |
平均值Average value | 3 032 | 7 351 | 10 192 | 4 486 | 3 148 | 3 976 | |
W3 | 30 | 7 361 | 17 318 | 9 571 | 3 067 | 292 | 1 419 |
60 | 10 161 | 22 753 | 9 585 | 3 582 | 851 | 1 913 | |
90 | 6 798 | 14 687 | 8 266 | 2 935 | 246 | 1 357 | |
120 | 1 861 | 9 961 | 7 539 | 1 439 | 148 | 1 312 | |
150 | 116 | 9 348 | 4 051 | 863 | 45 | 697 | |
平均值Average value | 5 259 | 14 813 | 7 802 | 2 377 | 316 | 1 339 | |
W4 | 30 | 5 321 | 12 889 | 10 927 | 3 840 | 2 810 | 2 554 |
60 | 5 691 | 14 119 | 11 010 | 8 519 | 3 452 | 3 243 | |
90 | 4 927 | 10 634 | 5 824 | 3 301 | 2 633 | 2 413 | |
120 | 4 457 | 10 536 | 5 573 | 2 999 | 1 655 | 2 413 | |
150 | 3 390 | 7 500 | 5 508 | 2 716 | 1 621 | 1 176 | |
平均值Average value | 4 757 | 11 136 | 7 768 | 4 275 | 2 434 | 2 360 |
表5 不同调亏处理行向距离与土层深度核桃树有效根长密度的变化
Tab.5 Changes of row distance and soil depth and effective root length density under different deficit adjustment treatments of walunt tree
行向距离 Direction distance (cm) | 土层深度Soil depth(cm) | ||||||
---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | ||
W0 | 30 | 4 632 | 8 774 | 11 615 | 5 197 | 3 450 | 4 640 |
60 | 5 672 | 8 921 | 11 794 | 5 840 | 3 704 | 5 538 | |
90 | 3 171 | 7 854 | 11 001 | 4 144 | 2 901 | 4 128 | |
120 | 1 342 | 6 739 | 8 696 | 3 990 | 2 830 | 3 700 | |
150 | 343 | 4 468 | 7 853 | 3 259 | 2 858 | 1 873 | |
平均值Average value | 3 032 | 7 351 | 10 192 | 4 486 | 3 148 | 3 976 | |
W3 | 30 | 7 361 | 17 318 | 9 571 | 3 067 | 292 | 1 419 |
60 | 10 161 | 22 753 | 9 585 | 3 582 | 851 | 1 913 | |
90 | 6 798 | 14 687 | 8 266 | 2 935 | 246 | 1 357 | |
120 | 1 861 | 9 961 | 7 539 | 1 439 | 148 | 1 312 | |
150 | 116 | 9 348 | 4 051 | 863 | 45 | 697 | |
平均值Average value | 5 259 | 14 813 | 7 802 | 2 377 | 316 | 1 339 | |
W4 | 30 | 5 321 | 12 889 | 10 927 | 3 840 | 2 810 | 2 554 |
60 | 5 691 | 14 119 | 11 010 | 8 519 | 3 452 | 3 243 | |
90 | 4 927 | 10 634 | 5 824 | 3 301 | 2 633 | 2 413 | |
120 | 4 457 | 10 536 | 5 573 | 2 999 | 1 655 | 2 413 | |
150 | 3 390 | 7 500 | 5 508 | 2 716 | 1 621 | 1 176 | |
平均值Average value | 4 757 | 11 136 | 7 768 | 4 275 | 2 434 | 2 360 |
株向距离 Plant orientation distance(cm) | 土层深度Soil depth(cm) | ||||||
---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | ||
W0 | 20 | 3 767 | 10 255 | 11 195 | 5 156 | 4 330 | 4 396 |
40 | 3 845 | 7 712 | 10 708 | 4 552 | 3 343 | 4 491 | |
60 | 3 020 | 6 951 | 10 672 | 4 545 | 3 131 | 3 810 | |
80 | 2 596 | 6 118 | 9 465 | 4 500 | 2 920 | 3 728 | |
100 | 1 933 | 5 719 | 8 920 | 3 677 | 2 017 | 3 453 | |
平均值Average value | 3 032 | 7 351 | 10 192 | 4 486 | 3 148 | 3 976 | |
W3 | 20 | 6 111 | 16 881 | 10 160 | 2 853 | 919 | 2 295 |
40 | 5 476 | 16 202 | 9 129 | 2 563 | 442 | 1 467 | |
60 | 5 478 | 16 076 | 8 696 | 2 304 | 102 | 1 111 | |
80 | 4 656 | 13 045 | 5 992 | 2 203 | 63 | 942 | |
100 | 4 576 | 11 862 | 5 034 | 1 963 | 56 | 883 | |
平均值Average value | 5 259 | 14 813 | 7 802 | 2 377 | 316 | 1 339 | |
W4 | 20 | 6 517 | 16 217 | 10 298 | 7 109 | 4 489 | 2 754 |
40 | 6 019 | 14 160 | 8 586 | 5 998 | 2 123 | 2 739 | |
60 | 4 363 | 10 978 | 7 503 | 3 579 | 2 226 | 2 519 | |
80 | 3 861 | 8 211 | 6 472 | 2 663 | 1 987 | 2 011 | |
100 | 3 025 | 6 112 | 5 982 | 2 027 | 1 346 | 1 777 | |
平均值Average value | 4 757 | 11 136 | 7 768 | 4 275 | 2 434 | 2 360 |
表6 不同调亏处理株向距离与土层深度核桃树有效根长密度的变化
Tab.6 Changes of plant direction distance and soil depth and effective root length density under different deficit regulation treatments of walunt tree
株向距离 Plant orientation distance(cm) | 土层深度Soil depth(cm) | ||||||
---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | ||
W0 | 20 | 3 767 | 10 255 | 11 195 | 5 156 | 4 330 | 4 396 |
40 | 3 845 | 7 712 | 10 708 | 4 552 | 3 343 | 4 491 | |
60 | 3 020 | 6 951 | 10 672 | 4 545 | 3 131 | 3 810 | |
80 | 2 596 | 6 118 | 9 465 | 4 500 | 2 920 | 3 728 | |
100 | 1 933 | 5 719 | 8 920 | 3 677 | 2 017 | 3 453 | |
平均值Average value | 3 032 | 7 351 | 10 192 | 4 486 | 3 148 | 3 976 | |
W3 | 20 | 6 111 | 16 881 | 10 160 | 2 853 | 919 | 2 295 |
40 | 5 476 | 16 202 | 9 129 | 2 563 | 442 | 1 467 | |
60 | 5 478 | 16 076 | 8 696 | 2 304 | 102 | 1 111 | |
80 | 4 656 | 13 045 | 5 992 | 2 203 | 63 | 942 | |
100 | 4 576 | 11 862 | 5 034 | 1 963 | 56 | 883 | |
平均值Average value | 5 259 | 14 813 | 7 802 | 2 377 | 316 | 1 339 | |
W4 | 20 | 6 517 | 16 217 | 10 298 | 7 109 | 4 489 | 2 754 |
40 | 6 019 | 14 160 | 8 586 | 5 998 | 2 123 | 2 739 | |
60 | 4 363 | 10 978 | 7 503 | 3 579 | 2 226 | 2 519 | |
80 | 3 861 | 8 211 | 6 472 | 2 663 | 1 987 | 2 011 | |
100 | 3 025 | 6 112 | 5 982 | 2 027 | 1 346 | 1 777 | |
平均值Average value | 4 757 | 11 136 | 7 768 | 4 275 | 2 434 | 2 360 |
[1] | 席婧, 蒋志辉. 新疆地区核桃产业发展现状分析[J]. 现代园艺, 2023, 46(2): 38-40. |
XI Jing, JIANG Zhihui. Analysis of the Development Status of Walnut Industry in Xinjiang Region[J]. Modern Horticulture, 2023, 46(2): 38-40. | |
[2] | 马博涛, 邓佳佳. 乡村振兴视阈下南疆特色林果产业发展现状及破局路径[J]. 农业与技术, 2021, 41(17): 172-174. |
MA Botao, DENG Jiajia. Development status and breakthrough path of characteristic forest and fruit industry in Southern Xinjiang under the visual threshold of Rural Revitalization[J]. Agriculture and Technology, 2021, 41(17): 172-174. | |
[3] | 李会芳, 朱艳芬, 蔡倒录. 新疆农业用水及主要农作物用水特征问题研究[J]. 农业与技术, 2021, 41(21): 40-43. |
LI Huifang, ZHU Yanfen, CAI Daolu. Duan. Research on characteristics of water consumption for agriculture and main crops in Xinjiang[J]. Agriculture and Technology, 2021, 41(21): 40-43. | |
[4] | 李茜, 刘松涛. 果树调亏灌溉技术研究动态及其应用[J]. 节水灌溉, 2016, (10): 113-116. |
LI Qian, LIU Songtao. Research trends and application of regulated deficit irrigation technology for fruit trees[J]. Water-Saving Irrigation, 2016, (10): 113-116. | |
[5] |
王玉阳, 陈亚鹏. 植物根系吸水模型研究进展[J]. 草业学报, 2017, 26(3): 214-225.
DOI |
WANG Yuyang, CHEN Yapeng. Research progress in water uptake models by plant roots[J]. Acta Prataculturae Sinica, 2017, 26(3): 214-225.
DOI |
|
[6] | Hillel D. ‘SPACE’A modified soil-plant-atmosphere-continuum electro analog[J]. Soil Science, 1991, 151(6): 399-404. |
[7] | 田盼盼, 董新光, 姚鹏亮, 等. 干旱区不同灌溉方式下枣树根系分布特性研究[J]. 水资源与水工程学报, 2012, 23(1): 102-105. |
TIAN Panpan, DONG Xinguang, YAO Pengliang, et al. Research on root distribution characteristics of jujube tree under different irrigation methods in arid area[J]. Journal of Water Resources and Water Engineering, 2012, 23(1): 102-105. | |
[8] | Clothier Brent E, Green Steven R. Rootzone processes and the efficient use of irrigation water[J]. Agricultural Water Management, 1994, 25(1): 1-12. |
[9] |
宋锋惠, 罗达, 李嘉诚, 等. 黑核桃根系分布特征研究[J]. 新疆农业科学, 2018, 55(4): 682-688.
DOI |
SONG Fenghui, LUO Da, LI Jiacheng, et al. Studies on Characteristics of Root Distribution of Juglans nigra L[J]. Xinjiang Agricultural Sciences, 2018, 55(4): 682-688.
DOI |
|
[10] | 孙三民, 安巧霞, 杨培岭, 等. 间接地下滴灌灌溉深度对枣树根系和水分的影响[J]. 农业机械学报, 2016, 47(8): 81-90. |
SUN Sanmin, AN Qiaoxia, YANG Peiling, et al. Effect of irrigation depth on root distribution and water use efficiency of jujube under indirect subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 81-90. | |
[11] | 郑利剑, 马娟娟, 郭飞, 等. 蓄水坑灌下矮砧苹果园水分监测点位置研究[J]. 农业机械学报, 2015, 46(10): 160-166. |
ZHENG Lijian, MA Juanjuan, GUO Fei, et al. Monitoring locations of soil water content in water storage pit irrigated dwarfing apple tree orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 160-166. | |
[12] | 任小通, 马娟娟, 孙西欢, 等. 根区灌溉下灌水上限对葡萄吸水根系和产量的影响[J]. 节水灌溉, 2022,(6): 10-16. |
REN Xiaotong, MA Juanjuan, SUN Xihuan, et al. Effects of upper irrigation limits on water-absorbing roots and yield of grape under root zone irrigation[J]. Water Saving Irrigation, 2022,(6): 10-16. | |
[13] | 张建英, 张莹莹, 毛向红. 砂壤土绿岭核桃根系空间分布规律研究[J]. 安徽农业科学, 2020, 48(23): 151-153. |
ZHANG Jianying, ZHANG Yingying, MAO Xianghong. Research on the spatial distribution of lüling walnut root system in sandy loam[J]. Journal of Anhui Agricultural Sciences, 2020, 48(23): 151-153. | |
[14] | 李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报, 2013, 33(5): 1535-1544. |
LI Jianxing, HE Binghui, CHEN Yun. Root features of typical herb plants for hillslope protection and their effects on soil infiltration[J]. Acta Ecologica Sinica, 2013, 33(5): 1535-1544. | |
[15] | Yeaton R I, Travis J, Gilinsky E. Competition and spacing in plant communities: the Arizona upland association[J]. The Journal of Ecology, 1977, 65(2): 587. |
[16] | 卫新东, 汪星, 汪有科, 等. 黄土丘陵区红枣经济林根系分布与土壤水分关系研究[J]. 农业机械学报, 2015, 46(4): 88-97. |
WEI Xindong, WANG Xing, WANG Youke, et al. Root distribution and soil water dynamics of jujube plantations in Loess Hilly Regions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 88-97. | |
[17] | Gyssels G, Poesen J. The importance of plant root characteristics in controlling concentrated flow erosion rates[J]. Earth Surface Processes and Landforms, 2003, 28(4): 371-384. |
[18] | Stokes A, Atger C, Bengough A G, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant and Soil, 2009, 324(1): 1-30. |
[19] | 张宇清, 朱清科, 齐实, 等. 梯田埂坎立地植物根系分布特征及其对土壤水分的影响[J]. 生态学报, 2005, 25(3): 500-506. |
ZHANG Yuqing, ZHU Qingke, QI Shi, et al. Root system distribution characteristics of plants on the terrace banks and their impact on soil moisture[J]. Acta Ecologica Sinica, 2005, 25(3): 500-506. | |
[20] | 刘晓丽, 马理辉, 杨荣慧, 等. 黄土半干旱区枣林深层土壤水分消耗特征[J]. 农业机械学报, 2014, 45(12): 139-145. |
LIU Xiaoli, MA Lihui, YANG Ronghui, et al. Deep soil water depletion characteristic of jujube plantation in loess semiarid region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 139-145. | |
[21] | 黄建辉, 韩兴国, 陈灵芝. 森林生态系统根系生物量研究进展[J]. 生态学报, 1999, 19(2): 128-135. |
HUANG Jianhui, HAN Xingguo, CHEN Lingzhi. Advances in the research of(fine)root biomass in forest ecosystems[J]. Acta Ecologica Sinica, 1999, 19(2): 128-135. | |
[22] | 寇萌, 焦菊英, 王巧利, 等. 黄土丘陵沟壑区不同植被带植物群落的细根分布特征[J]. 农业机械学报, 2016, 47(2): 161-171. |
KOU Meng, JIAO Juying, WANG Qiaoli, et al. Fine root distribution characteristics of plant community in different vegetation zones in hill-gully region of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 161-171. | |
[23] | 焦萍, 虎胆·吐马尔白, 米力夏提·米那多拉. 滴灌条件下成龄核桃根系空间分布特征和模型研究[J]. 干旱地区农业研究, 2020, 38(5): 116-122. |
JIAO Ping, Hudan Tumaerbai, Milixiati Minaduola. Study on the spatial distribution characteristics and models of the roots of mature walnut under drip irrigation[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 116-122. | |
[24] | 邹衡, 谢永生, 骆汉, 等. 关中平原不同土壤类型猕猴桃园根系空间分布特征[J]. 中国果树, 2022,(6): 25-30, 54. |
ZOU Heng, XIE Yongsheng, LUO Han, et al. Spatial distribution characteristics of kiwifruit roots in different soil types in Guanzhong Plain[J]. China Fruits, 2022,(6): 25-30, 54. | |
[25] | 蒋敏, 孙博瑞, 周少梁, 等. 不同灌水深度条件下枣树根系空间分布及土壤水分研究[J]. 北方园艺, 2022,(6): 77-83. |
JIANG Min, SUN Borui, ZHOU Shaoliang, et al. Root spatial distribution and soil moisture of jujube under different irrigation depth[J]. Northern Horticulture, 2022,(6): 77-83. | |
[26] | 李宏, 董华, 郭光华, 等. 阿克苏红富士苹果盛果期根系空间分布规律[J]. 经济林研究, 2013, 31(2): 78-85. |
LI Hong, DONG Hua, GUO Guanghua, et al. Spatial distribution rule of root system of Red FuJi Apple trees at full bearing period in Akesu[J]. Nonwood Forest Research, 2013, 31(2): 78-85. | |
[27] | Tanaseseu N, Paltineanu C. Root distribution of apple tree under various irrigation systems within the hilly region of Romania[J]. International Agrophysics, 2004, 18(2): 175-180. |
[28] | Sokalska D I, Haman D Z, Szewczuk A, et al. Spatial root distribution of mature apple trees under drip irrigation system[J]. Agricultural Water Management, 2009, 96(6): 917-924. |
[29] | 王磊, 马英杰, 赵经华, 等. 干旱区滴灌核桃树有效吸水根系的分布与模拟研究[J]. 节水灌溉, 2013,(10): 17-20. |
WANG Lei, MA Yingjie, ZHAO Jinghua, et al. Simulation of effective roots distribution of walnut tree under drip irrigation condition in arid area[J]. Water Saving Irrigation, 2013,(10): 17-20. | |
[30] | 王磊, 马英杰, 赵经华, 等. 干旱区滴灌核桃树根系空间分布特性研究[J]. 水资源与水工程学报, 2013, 24(5): 92-95. |
WANG Lei, MA Yingjie, ZHAO Jinghua, et al. Study on characteristic of root distribution of walnut tree under condition of drip irrigation in arid area[J]. Journal of Water Resources and Water Engineering, 2013, 24(5): 92-95. | |
[31] | 杨胜利, 刘洪禄, 郝仲勇, 等. 畦灌条件下樱桃树根系的空间分布特征[J]. 农业工程学报, 2009, 25(S1): 34-38. |
YANG Shengli, LIU Honglu, HAO Zhongyong, et al. Spatial distribution characteristics of cherry tree roots under border irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S1): 34-38. | |
[32] | 张瑞芳, 张爱军, 王红, 等. 河流故道区梨树根系分布规律研究[J]. 中国农学通报, 2006, 22(4): 382-384. |
ZHANG Ruifang, ZHANG Aijun, WANG Hong, et al. Study on the law of pear root distribution in river ancient channel[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 382-384.
DOI |
|
[33] | 李楠, 廖康, 成小龙, 等. ‘库尔勒香梨’根系分布特征研究[J]. 果树学报, 2012, 29(6): 1036-1039. |
LI Nan, LIAO Kang, CHENG Xiaolong, et al. Studies on characteristics of root distribution of ‘Korla’s Xiangli’[J]. Journal of Fruit Science, 2012, 29(6): 1036-1039. | |
[34] | 陈高安, 潘存德, 王世伟, 等. 间作条件下杏树吸收根空间分布特征[J]. 新疆农业科学, 2011, 48(5): 821-825. |
CHEN Gaoan, PAN Cunde, WANG Shiwei, et al. Spatial distribution characteristics of absorbing roots of apricot trees in the intercropping systems[J]. Xinjiang Agricultural Sciences, 2011, 48(5): 821-825. | |
[35] | DaMatta F M, Loos R A, Silva E A, et al. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre[J]. Trees, 2002, 16(8): 555-558. |
[36] | 黄林, 王峰, 周立江, 等. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 2012, 32(19): 6110-6119. |
HUANG Lin, WANG Feng, ZHOU Lijiang, et al. Root distribution in the different forest types and their relationship to soil properties[J]. Acta Ecologica Sinica, 2012, 32(19): 6110-6119. |
[1] | 刘雨萍, 徐兵强, 宋博, 李海强, 陈浩宇, 郝敬喆, 朱晓锋, 任金龙. 李小食心虫在果园的空间分布变化及其最适抽样数的分析[J]. 新疆农业科学, 2024, 61(7): 1772-1777. |
[2] | 葛伟淇, 胡安, 王德钢, 许正红, 刘长月, 何梦雅, 唐永清, 王朴, 王少山. 不同林分类型下白蜡窄吉丁空间格局分析[J]. 新疆农业科学, 2024, 61(4): 964-970. |
[3] | 蒲胜海, 王则玉, 丁峰, 牛新湘, 金秀勤, 马红红, 马兴旺, 李磐, 彭银双, 刘小利, 涂永峰, 赵冬梅, 李小伟, 李韵同. 膜下滴灌水氮空间调控对机采棉群体塑造及产量的影响[J]. 新疆农业科学, 2022, 59(8): 1838-1846. |
[4] | 何婷, 蔡桂芳, 贾海英, 翟亚伟, 马荣. 壳囊孢属真菌(Cytospora spp.)在新疆的分布特征[J]. 新疆农业科学, 2022, 59(11): 2696-2706. |
[5] | 张纪圆, 赵经华, 杨文新, 姜有为, 廖康, 哈力旦木·吐尔迪, 热纳古丽·库尔班. 调亏灌溉对滴灌核桃树土壤温度及产量的影响[J]. 新疆农业科学, 2022, 59(1): 95-104. |
[6] | 李永福, 耿庆龙, 陈署晃, 赖宁, 李娜, 信会男, 赵海燕. 天山南坡农区土壤养分空间分布特征[J]. 新疆农业科学, 2021, 58(2): 324-331. |
[7] | 张绘芳, 张景路, 朱雅丽, 地力夏提·包尔汉, 高亚琪, 雷亚君. 天山西部天然乔木林空间分布与地形因子的定量关联[J]. 新疆农业科学, 2020, 57(1): 139-148. |
[8] | 付园园, 蒋萍, 刘爱华, 张静文, 岳朝阳, 田呈明. 不同景观尺度对杨盾蚧种群空间分布的影响分析[J]. 新疆农业科学, 2019, 56(11): 2043-2053. |
[9] | 于伯成;肖英;陈江青;张智猛. 距核桃树干不同距离种植花生效果的研究[J]. , 2017, 54(3): 423-428. |
[10] | 高莎, 郑江华, 马涛, 吴建国, 那松曹克图, 麦迪·库尔曼. 遥感监测适用性分析[J]. 新疆农业科学, 2017, 54(10): 1949-1956. |
[11] | 赵多勇;郭庆军;王成;康露;宋斌;杨莲;曹双瑜;马磊;卫阳. 库尔勒香梨主产区土壤重金属污染评价及分布研究[J]. , 2016, 53(2): 332-338. |
[12] | 汪昌树;杨鹏年;张瀚;于宴民. 焉耆盆地绿洲区水体硝态氮量调查及其空间分布研究[J]. , 2016, 53(10): 1877-1884. |
[13] | 靳瑰丽;魏秀红;张鲜花;朱习雯;龙昊;阿依佐合热·努尔东. 小尺度下醉马草与几种草原植物种间关联分析[J]. , 2016, 53(10): 1923-1931. |
[14] | 丁新华;吐尔逊;何江;郭文超;付文君;班晓丽;关志坚;周俊. 新疆荒漠绿洲生态区稻水象甲成虫空间分布型研究[J]. , 2015, 52(5): 875-881. |
[15] | 李晶;吐尔逊·阿合买提;丁新华;何江;王登元;郭文超;李超. 马铃薯甲虫时空分布格局研究[J]. , 2015, 52(12): 2250-2258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||