新疆农业科学 ›› 2024, Vol. 61 ›› Issue (6): 1328-1335.DOI: 10.6048/j.issn.1001-4330.2024.06.004
• 作物遗传育种•种质资源•分子遗传学•耕作栽培•生理生化 • 上一篇 下一篇
邵亚杰1(), 李珂1, 丁文浩1, 林涛2(
), 崔建平2, 郭仁松2, 王亮2, 吴凤全1, 王心1, 汤秋香1(
)
收稿日期:
2023-10-24
出版日期:
2024-06-20
发布日期:
2024-08-08
通信作者:
汤秋香(1980-),女,河南开封人,教授,博士,硕士生/博士生导师,研究方向为农田生态环境,(E-mail)790058828@qq.com;作者简介:
邵亚杰(1996-),男,新疆博乐人,硕士研究生,研究方向为棉花生长信息快速诊断,(E-mail)1519858040@qq.com
基金资助:
SHAO Yajie1(), LI Ke1, DING Wenhao1, LIN Tao2(
), CUI Jianping2, GUO Rensong2, WANG Liang2, WU Fengquan1, WANG Xin1, TANG Qiuxiang1(
)
Received:
2023-10-24
Published:
2024-06-20
Online:
2024-08-08
Correspondence author:
TANG Qiuxiang (1980-), female, from Kaifeng, Henan, professor, Ph.D.,doctoral supervisor, research direction: cotton field ecological environment, (E-mail)790058828@qq.com;Supported by:
摘要:
【目的】基于植被指数(Vegetation Indexes,VIs)与机器学习算法建立的棉花地上部生物量(Aboveground Biomass,AGB),估算模型并评价其适用性和准确性,为丰富棉花生物量的遥感监测技术、提升生产的精准化管理水平提供科学依据。【方法】设计施氮量与密度互作试验,同步采集主要生育时期的棉田实测AGB数据与无人机多光谱遥感影像数据,计算得到8种VIs,并引入其中与AGB相关系数最高的3种VIs,构建基于机器学习算法的支持向量回归(Support Vactor Regression, SVR)、偏最小二乘回归(Partial Least Squares Regression, PLSR)和深度神经网络(Deep Neural Network,DNN)等AGB估算模型,评估不同VIs和模型的适用性和估算精度。【结果】8种VIs与AGB均呈显著相关,其中NGBDI、NDREI和EXG的相关系数绝对值|r|达到0.659~0.788,且与棉花生物量之间显著相关。三种回归模型中,SVR模型的估算效果最好,模型验证精度为R2=0.89,RMSE=2.30,rRMSE=0.20。【结论】相较于PLSR和DNN估算模型,SVR模型更适合估算棉花生物量。
中图分类号:
邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335.
SHAO Yajie, LI Ke, DING Wenhao, LIN Tao, CUI Jianping, GUO Rensong, WANG Liang, WU Fengquan, WANG Xin, TANG Qiuxiang. Study on cotton biomass estimation based on multi-spectral imaging features of unmanned aerial vehicle[J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1328-1335.
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 References |
---|---|---|
DVI | 夏天等[ | |
GNDVI | Camille et.al[ | |
TCRI | Shao et.al[ | |
EVI | Liu et.al[ | |
NDREI | Shao et.al[ | |
EXG | Liu et.al[ | |
EXGR | Fu et.al[ | |
NGBDI | Sulik et.al[ |
表1 研究采用的植被指数及公式
Tab.1 The vegetation indexs in this study
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 References |
---|---|---|
DVI | 夏天等[ | |
GNDVI | Camille et.al[ | |
TCRI | Shao et.al[ | |
EVI | Liu et.al[ | |
NDREI | Shao et.al[ | |
EXG | Liu et.al[ | |
EXGR | Fu et.al[ | |
NGBDI | Sulik et.al[ |
图1 不同施氮量与密度下棉花生物量的变化 注:BS:蕾期,FS:花期,FBS:铃期,BOS:吐絮期
Fig.1 Changes of cotton AGB under Different Nitrogen Rates and plant Densities Note: BS : bud stage, FS : flowering stage, FBS : full bolling stage, BOS : boll opening stage
模型 Model | 建模集 Training set | 验证集 Testing set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | rRMSE | R2 | RMSE | rRMSE | |
SVR | 0.89 | 2.23 | 0.20 | 0.89 | 2.30 | 0.20 |
PLSR | 0.86 | 2.55 | 0.23 | 0.81 | 3.01 | 0.27 |
DNN | 0.87 | 2.47 | 0.22 | 0.84 | 2.79 | 0.25 |
表2 基于植被指数的棉花生物量估算结果评价
Tab.2 Evaluation of AGB estimation results of cotton based on vegetation index
模型 Model | 建模集 Training set | 验证集 Testing set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | rRMSE | R2 | RMSE | rRMSE | |
SVR | 0.89 | 2.23 | 0.20 | 0.89 | 2.30 | 0.20 |
PLSR | 0.86 | 2.55 | 0.23 | 0.81 | 3.01 | 0.27 |
DNN | 0.87 | 2.47 | 0.22 | 0.84 | 2.79 | 0.25 |
[1] | 刘杨, 孙乾, 黄珏, 等. 无人机多光谱影像的马铃薯地上生物量估算[J]. 光谱学与光谱分析, 2021, 41(8): 2549-2555. |
LIU Yang, SUN Qian, HUANG Jue, et al. Estimation of potato above ground biomass based on UAV multispectral images[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2549-2555. | |
[2] | 樊鸿叶, 李姚姚, 卢宪菊, 等. 基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J]. 中国农业科技导报, 2021, 23(9): 112-120. |
FAN Hongye, LI Yaoyao, LU Xianju, et al. Comparative analysis of LAI and above-ground biomass estimation models based on UAV multispectral remote sensing[J]. Journal of Agricultural Science and Technology, 2021, 23(9): 112-120. | |
[3] | 黄春燕, 王登伟, 曹连莆, 等. 棉花地上鲜生物量的高光谱估算模型研究[J]. 农业工程学报, 2007, 23(3): 131-135. |
HUANG Chunyan, WANG Dengwei, CAO Lianpu, et al. Models for estimating cotton aboveground fresh biomass using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3): 131-135. | |
[4] | 李岚涛, 郭宇龙, 韩鹏, 等. 基于高光谱的冬小麦不同生育时期地上部生物量监测[J]. 麦类作物学报, 2021, 41(7): 904-913. |
LI Lantao, GUO Yulong, HAN Peng, et al. Estimation of shoot biomass at different growth stages of winter wheat based on hyperspectral reflectance[J]. Journal of Triticeae Crops, 2021, 41(7): 904-913. | |
[5] |
卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164.
DOI |
BU Lingxin, LAI Quan, LIU Xinyi. Adaptation of different machine learning algorithms for grassland biomass estimation[J]. Acta Agrestia Sinica, 2022, 30(11): 3156-3164.
DOI |
|
[6] | Ballesteros R, Ortega J F, Hernandez D, et al. Onion biomass monitoring using UAV-based RGB imaging[J]. Precision Agriculture, 2018, 19(5): 840-857. |
[7] | 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. |
ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al. Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. | |
[8] | 陆国政, 杨贵军, 赵晓庆, 等. 基于多载荷无人机遥感的大豆地上鲜生物量反演[J]. 大豆科学, 2017, 36(1): 41-50. |
LU Guozheng, YANG Guijun, ZHAO Xiaoqing, et al. Inversion of soybean fresh biomass based on multi-payload unmanned aerial vehicles (UAVs)[J]. Soybean Science, 2017, 36(1): 41-50. | |
[9] | 孙世泽, 汪传建, 尹小君, 等. 无人机多光谱影像的天然草地生物量估算[J]. 遥感学报, 2018, 22(5): 848-856. |
SUN Shize, WANG Chuanjian, YIN Xiaojun, et al. Estimating aboveground biomass of natural grassland based on multispectral images of Unmanned Aerial Vehicles[J]. Journal of Remote Sensing, 2018, 22(5): 848-856. | |
[10] | Wang D L, Xin X P, Shao Q Q, et al. Modeling aboveground biomass in Hulunber grassland ecosystem by using unmanned aerial vehicle discrete lidar[J]. Sensors, 2017, 17(12): 180. |
[11] |
张雨欣, 黄健熙, 金云翔, 等. 草地地上生物量估算模型研究进展[J]. 草地学报, 2022, 30(4): 850-858.
DOI |
ZHANG Yuxin, HUANG Jianxi, JIN Yunxiang, et al. Estimation of grasslands aboveground biomass: a review[J]. Acta Agrestia Sinica, 2022, 30(4): 850-858.
DOI |
|
[12] | Deo R C, Şahin M. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 828-848. |
[13] | Safari A, Sohrabi H, Powell S, et al. A comparative assessment of multi-temporal Landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests[J]. International Journal of Remote Sensing, 2017, 38(22): 6407-6432. |
[14] | 王玉娜, 李粉玲, 王伟东, 等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报, 2020, 40(11): 1389-1398. |
WANG Yuna, LI Fenling, WANG Weidong, et al. Hyper-spectral remote sensing stimation of shoot biomass of winter wheat based on SPA and transformation spectra[J]. Journal of Triticeae Crops, 2020, 40(11): 1389-1398. | |
[15] | 纪伟帅. 基于无人机多光谱的棉花冠层叶片叶绿素相对含量、叶面积指数反演[D]. 泰安: 山东农业大学, 2021: 56. |
JI Weishuai. Inversion of SPAD and LAI in Cotton Canopy Leaves Based on UAV Multispectral[D]. Taian: Shandong Agricultural University, 2021: 56. | |
[16] | 王士红. 增密减氮对棉花产量品质的影响及氮高效生理基础研究[D]. 泰安: 山东农业大学, 2019: 124. |
WANG Shihong. Effects of Increasing Plant Density and Decreasing Nitrogen Rate on Yield and Quality of Cotton, and Physiological Mechanisms of Nitrogen Efficient Utilization[D]. Taian: Shandong Agricultural University, 2019: 124. | |
[17] | 李春艳. 密度与氮肥对机采棉产量及氮肥利用影响的研究[D]. 乌鲁木齐: 新疆农业大学, 2018: 61. |
LI Chunyan. Effects of Density and Nitrogen Fertilizer on Cotton Production and Nitrogen Utilization[D]. Urumqi: Xinjiang Agricultural University, 2018: 61. | |
[18] | 夏天, 周清波, 陈仲新, 等. 基于HJ-1卫星的冬小麦叶片SPAD遥感监测研究[J]. 中国农业资源与区划, 2012, 33(6): 38-44. |
XIA Tian, ZHOU Qingbo, CHEN Zhongxin, et al. Monitoring winter wheat spad based on hj-1 ccd[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(6): 38-44. | |
[19] |
Lelong C, Burger P, Jubelin G, et al. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots[J]. Sensors, 2008, 8(5): 3557-3585.
DOI PMID |
[20] | Shao G M, Han W T, Zhang H H, et al. Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery[J]. The Crop Journal, 2022, 10(5): 1376-1385. |
[21] |
Liu S B, Jin X L, Nie C W, et al. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms[J]. Plant Physiology, 2021, 187(3): 1551-1576.
DOI PMID |
[22] | Liu Y, Feng H K, Yue J B, et al. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images[J]. Computers and Electronics in Agriculture, 2022, 198: 107089. |
[23] | Fu Y Y, Yang G J, Li Z H, et al. Winter wheat nitrogen status estimation using UAV-based RGB imagery and Gaussian processes regression[J]. Remote Sensing, 2020, 12(22): 3778. |
[24] | Sulik J J, Long D S. Spectral considerations for modeling yield of canola[J]. Remote Sensing of Environment, 2016, 184: 161-174. |
[25] | 贾学勤, 冯美臣, 杨武德, 等. 基于多植被指数组合的冬小麦地上干生物量高光谱估测[J]. 生态学杂志, 2018, 37(2): 424-429. |
JIA Xueqin, FENG Meichen, YANG Wude, et al. Hyperspectral estimation of aboveground dry biomass of winter wheat based on the combination of vegetation indices[J]. Chinese Journal of Ecology, 2018, 37(2): 424-429. | |
[26] | 尚珂. 基于支持向量机回归的草地地上生物量遥感估测研究[D]. 昆明: 西南林业大学, 2015: 67. |
SHANG Ke. The Study of Grassland above Ground Biomass Inversion Based on Support Vector Machine Regression[D]. Kunming: Southwest Forestry University, 2015: 67. | |
[27] | 兰仕浩, 李映雪, 吴芳, 等. 基于卫星光谱尺度反射率的冬小麦生物量估算[J]. 农业工程学报, 2022, 38(24): 118-128. |
LAN Shihao, LI Yingxue, WU Fang, et al. Winter wheat biomass estimation based on satellite spectral-scale reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 118-128. | |
[28] | 张子慧, 吴世新, 赵子飞, 等. 基于机器学习算法的草地地上生物量估测——以祁连山草地为例[J]. 生态学报, 2022, 42(22): 8953-8963. |
ZHANG Zihui, WU Shixin, ZHAO Zifei, et al. Estimation of grassland biomass using machine learning methods: a case study of grassland in Qilian Mountains[J]. Acta Ecologica Sinica, 2022, 42(22): 8953-8963. | |
[29] | 孙全. 基于无人机可见光-近红外图像的小麦关键生长指标监测研究[D]. 扬州: 扬州大学, 2021: 92. |
SUN Quan. Key Wheat Growth Indicators Monitoring Based on UAV Visible-NIR Imagery[D]. Yangzhou: Yangzhou University, 2021: 92. | |
[30] | 吴芳, 李映雪, 张缘园, 等. 基于机器学习算法的冬小麦不同生育时期生物量高光谱估算[J]. 麦类作物学报, 2019, 39(2): 217-224. |
WU Fang, LI Yingxue, ZHANG Yuanyuan, et al. Hyperspectral estimation of biomass of winter wheat at different growth stages based on machine learning algorithms[J]. Journal of Triticeae Crops, 2019, 39(2): 217-224. | |
[31] | 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81-91. |
LI Pengcheng, DONG Helin, LIU Aizhong, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81-91. | |
[32] |
李飞, 郭莉莉, 赵瑞元, 等. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214.
DOI |
LI Fei, GUO Lili, ZHAO Ruiyuan, et al. Effects of increasing application depth and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of direct seeding cotton after rape harvest[J]. Cotton Science, 2022, 34(3): 198-214. | |
[33] | 辛明华, 王占彪, 李小飞, 等. 南疆棉区机采种植模式下棉花种植密度研究[J]. 山东农业科学, 2020, 52(1): 46-52. |
XIN Minghua, WANG Zhanbiao, LI Xiaofei, et al. Study on suitable planting density of cotton under machine-picked planting mode in South Xinjiang[J]. Shandong Agricultural Sciences, 2020, 52(1): 46-52. | |
[34] |
支晓宇, 韩迎春, 王国平, 等. 不同密度下棉花群体光辐射空间分布及生物量和纤维品质的变化[J]. 棉花学报, 2017, 29(4): 365-373.
DOI |
ZHI Xiaoyu, HAN Yingchun, WANG Guoping, et al. Changes to the PAR spatial distribution, biomass, and fiber quality in response to plant densities[J]. Cotton Science, 2017, 29(4): 365-373. | |
[35] |
牛玉萍, 陈宗奎, 杨林川, 等. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响[J]. 作物学报, 2016, 42(10): 1506-1515.
DOI |
NIU Yuping, CHEN Zongkui, YANG Linchuan, et al. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area[J]. Acta Agronomica Sinica, 2016, 42(10): 1506-1515.
DOI |
|
[36] |
王士红, 杨中旭, 史加亮, 等. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
DOI |
WANG Shihong, YANG Zhongxu, SHI Jialiang, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
DOI |
|
[37] | Sankaran S, Zhou J F, Khot L R, et al. High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery[J]. Computers and Electronics in Agriculture, 2018, 151: 84-92. |
[38] | Hunt E R Jr, Hively W D, Fujikawa S, et al. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring[J]. Remote Sensing, 2010, 2(1): 290-305. |
[39] | 岳继博, 杨贵军, 冯海宽. 基于随机森林算法的冬小麦生物量遥感估算模型对比[J]. 农业工程学报, 2016, 32(18): 175-182. |
YUE Jibo, YANG Guijun, FENG Haikuan. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 175-182. | |
[40] | 肖武, 陈佳乐, 笪宏志, 等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报, 2018, 49(8): 169-180. |
XIAO Wu, CHEN Jiale, DA Hongzhi, et al. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 169-180. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 戴爱梅, 叶梦迪, 丁志梅, 王志慧, 乔晓燕, 王小武, 付开赟, 贾尊尊, 叶晓琴, 吐尔逊·阿合买提, 康健, 丁新华, 郭文超. 不同苯唑氟草酮施药方式防除玉米田杂草药效及安全性评价[J]. 新疆农业科学, 2024, 61(S1): 28-34. |
[3] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[4] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[5] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[6] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[7] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[8] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[9] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[10] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[11] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[12] | 肖淑婷, 颜安, 王卫霞, 张青青, 侯正清, 马梦倩, 孙哲. 天山中部典型林区地上生物量时空变化及影响因素分析[J]. 新疆农业科学, 2024, 61(9): 2237-2244. |
[13] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[14] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[15] | 李汝勇, 任久明, 雷霆, 王克林, 刘鹏程, 李江涛. 基于光合法和生物量法分析塔里木沙漠公路防护林带碳汇估算差异性[J]. 新疆农业科学, 2024, 61(8): 2014-2022. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||