[1] |
苏芳蕊. 小麦群体生长可视化系统的设计与实现[D]. 郑州: 河南农业大学, 2011.
|
|
SU Fangrui. Design and Implementation of the Growing Visualization System for Wheat Population[D]. Zhengzhou: Henan Agricultural University, 2011.
|
[2] |
2021年度《中国水资源公报》发布[J]. 水资源开发与管理, 2022, 8(7):85.
|
|
China Water Resources Bulletin for 2021[J]. Water Resources Development and Management, 2022, 8(7):85.
|
[3] |
Qin H H, Cai X M, Zheng C M. Water demand predictions for megacities: system dynamics modeling and implications[J]. Water Policy, 2018, 20(1): 53-76.
|
[4] |
邓忠, 翟国亮, 宗洁, 等. 微灌系统堵塞机理分析与微灌过滤器研究进展[J]. 节水灌溉, 2014, (8): 71-74.
|
|
DENG Zhong, ZHAI Guoliang, ZONG Jie, et al. Clogging mechanism analysis of micro-irrigation system and the advance of research on micro-irrigation filter[J]. Water Saving Irrigation, 2014, (8): 71-74.
|
[5] |
胡程达, 方文松, 王红振, 等. 河南省冬小麦农田蒸散和作物系数[J]. 生态学杂志, 2020, 39(9): 3004-3010.
|
|
HU Chengda, FANG Wensong, WANG Hongzhen, et al. Evapotranspiration and crop coefficient of winter wheat cropland in Henan Province[J]. Chinese Journal of Ecology, 2020, 39(9): 3004-3010.
|
[6] |
董楠, 吕新, 侯振安, 等. 基于彭曼公式的膜下滴灌棉田灌水量研究[J]. 新疆农业科学, 2012, 49(4): 617-624.
|
|
DONG Nan, LYU Xin, HOU Zhenan, et al. Study on the irrigation water amount under film mulch drip irrigation according to penman-monteith formula[J]. Xinjiang Agricultural Sciences, 2012, 49(4): 617-624.
|
[7] |
白桦, 鲁向晖, 杨筱筱, 等. 基于彭曼公式日均值时序分析的中国蒸发能力动态成因[J]. 农业机械学报, 2019, 50(1): 235-244.
|
|
BAI Hua, LU Xianghui, YANG Xiaoxiao, et al. Attribution analysis on changes in evaporation capacity based on mean diurnal time-series analysis of penman equation in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 235-244.
|
[8] |
李志新, 赖志琴, 龙云墨. 基于GA-Elman神经网络的参考作物需水量预测[J]. 节水灌溉, 2019, (2):117-120.
|
|
LI Zhixin, LAI Zhiqin, LONG Yunmo. Prediction of reference crop water requirement based on GA-Elman neural network[J]. Water Saving Irrigation, 2019, (2):117-120.
|
[9] |
刘洪山, 王卫星, 孙道宗, 等. 基于GA-BP神经网络的果园需水量预测[J]. 排灌机械工程学报, 2020, 38(12): 1258-1263.
|
|
LIU Hongshan, WANG Weixing, SUN Daozong, et al. Prediction model of orchard water requirement based on BP neural network and genetic algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(12): 1258-1263.
|
[10] |
刘婧然, 刘心, 武海霞, 等. 基于GA优化的支持向量机模型在青椒作物需水量预测中的应用[J]. 节水灌溉, 2021, (1): 70-76.
|
|
LIU Jingran, LIU Xin, WU Haixia, et al. Application of support vector machine model based on GA optimization in water consumption prediction of green peppers[J]. Water Saving Irrigation, 2021, (1): 70-76.
|
[11] |
邓皓, 李文竹, 刘婧然, 等. 基于MIV-MEA-Elman神经网络的核桃果实膨大期需水量预测[J]. 节水灌溉, 2020, (4): 68-72.
|
|
DENG Hao, LI Wenzhu, LIU Jingran, et al. Water demand prediction for walnut fruit during swelling period based on MIV-MEA-elman neural network[J]. Water Saving Irrigation, 2020, (4): 68-72.
|
[12] |
夏泽豪, 翁绍捷, 罗微, 等. 基于灰色神经网络的作物需水量预测模型研究[J]. 中国农机化学报, 2015, 36(2): 219-223.
|
|
XIA Zehao, WENG Shaojie, LUO Wei, et al. Crop water requirement forecasting model based on grey neural network[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 219-223.
|
[13] |
王景雷, 康绍忠, 孙景生, 等. 基于贝叶斯最大熵和多源数据的作物需水量空间预测[J]. 农业工程学报, 2017, 33(9): 99-106, 315.
|
|
WANG Jinglei, KANG Shaozhong, SUN Jingsheng, et al. Spatial prediction of crop water requirement based on Bayesian maximum entropy and multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 99-106, 315.
|
[14] |
赵实, 赵雷, 周玉良. 基于彭曼公式的宿州水面蒸发计算与分析[J]. 安徽农业科学, 2022, 50(23): 199-202.
|
|
ZHAO Shi, ZHAO Lei, ZHOU Yuliang. Analysis of evaporation based on penman equation in Suzhou city[J]. Journal of Anhui Agricultural Sciences, 2022, 50(23): 199-202.
|
[15] |
田旭浪. 伊犁河灌区滴灌小麦作物系数及灌溉制度优化研究[D]. 石河子: 石河子大学, 2022.
|
|
TIAN Xulang. Optimization of wheat crop coefficient and irrigation system under drip irrigation in Yili River irrigation district[D]. Shihezi: Shihezi University, 2022.
|
[16] |
崔丽珍, 张清宇, 郭倩倩, 等. 基于CNN-LSTM的井下人员行为模式识别模型[J/OL]. 无线电工程:1-9 [2023-04-24].
|
|
CUI Lizhen, ZHANG Qingyu, GUO Qianqian, et al. Behavior pattern recognition model of downhole personnel based on CNN-LSTM[J/OL]. Radio Engineering: 1-9 [2023-04-24].
|
[17] |
梁燕华, 沈奋博, 谢子殿, 等. 基于LSTM模型的冲击地压预测方法研究[J/OL]. 中国矿业:1-9 [2023-04-16].
|
|
LIANG Yanhua, SHEN Fenbo, XIE Zidian, et al. Research on the prediction method of rock burst based on LSTM model[J/OL]. China Mining Industry:1-9 [2023-04-16].
|
[18] |
余琼芳, 牛冬阳. 基于LSTM网络的矿山压力时空混合预测[J]. 电子科技, 2023, 36(2): 67-72.
|
|
YU Qiongfang, NIU Dongyang. Mixed prediction of mine pressure time and space based on LSTM network[J]. Electronic Science and Technology, 2023, 36(2): 67-72.
|
[19] |
刘泽, 张闯, 齐磊, 等. 基于CNN-BiLSTM的锂电池剩余使用寿命概率密度预测[J]. 电源技术, 2023, 47(1): 57-61.
|
|
LIU Ze, ZHANG Chuang, QI Lei, et al. Prediction of probability density of remaining useful life of lithium ion battery based on CNN-BiLSTM[J]. Chinese Journal of Power Sources, 2023, 47(1): 57-61.
|
[20] |
王欢, 李鹏, 曹敏, 等. 基于CNN_BiLSTM的长短期电力负荷预测方法[J]. 计算机仿真, 2022, 39(3): 96-103.
|
|
WANG Huan, LI Peng, CAO Min, et al. Long-term and short-term power load online prediction method based on CNN_BiLSTM[J]. Computer Simulation, 2022, 39(3): 96-103.
|