新疆农业科学 ›› 2024, Vol. 61 ›› Issue (7): 1590-1596.DOI: 10.6048/j.issn.1001-4330.2024.07.004

• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇    下一篇

冬小麦需水量的预测模型对比分析

杜云1(), 张婧婧1(), 雷嘉诚1, 李博1, 李永福2   

  1. 1.新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
    2.新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091
  • 收稿日期:2023-11-07 出版日期:2024-07-20 发布日期:2024-09-04
  • 通信作者: 张婧婧(1981-),女,湖南宁乡人,副教授,研究方向为农业信息化技术,(E-mail)zjj@xjau.edu.cn
  • 作者简介:杜云(1997-),男,河北保定人,硕士研究生,研究方向为智慧农业,(E-mail)1137072153@qq.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项“农场数字化及智能化关键技术研究”(2022A02011-2);科技创新2030—“新一代人工智能”重大项目(2022ZD0115805)

Forecasting method of water requirement of winter wheat

DU Yun1(), ZHANG Jingjing1(), LEI Jiacheng1, LI Bo1, LI Yongfu2   

  1. 1. College of Computer and Information Engineering, Xinjiang Agricultural University/Engineering Research Center of Intelligent Agriculture Ministry of Education/Xinjiang Agricultural Informatization Engineering Technology Research Center,Urumqi 830052, China
    2. Institute of Soil Fertilizer and Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences,Urumqi 830091, China
  • Received:2023-11-07 Published:2024-07-20 Online:2024-09-04
  • Supported by:
    Key Science and Technology Project of Xinjiang Uygur Autonomous Region "Farm Digitization and Intelligent Key Technology Research"(2022A02011-2);2030 Science and Technology Innovation Project "New Generation of Artificial Intelligence Special Fund(2022ZD0115805)

摘要:

【目的】构建冬小麦需水量预测模型,提高需水量预测的精准度,为基于气象信息的需水量预测提供更为可靠的方法。【方法】选取新疆奇台县近5年的气象数据,采用公式Penman-Monteith计算冬小麦需水量(近似为真实需水量),基于CNN-BiLSTM模型,将平均温度、风速、湿度和降水量4个变量作为输入参数,预测冬小麦需水量,对比评估预测CNN-BiLSTM与LSTM、BiLSTM等6种模型的精准性。【结果】采用少量参数分别输入BP、RNN、LSTM、改进的BiLSTM和CNN-BiLSTM等模型中预测需水量,BP神经网络的预测效果较差。在模型评估中,CNN-BiLSTM比LSTM的R2提高约8%,MSE降低约0.56。【结论】CNN-BiLSTM模型对小麦需水量预测更加精准。

关键词: 冬小麦; 需水量; 预测; LSTM; CNN-BiLSTM

Abstract:

【Objective】Based on the meteorological data related to water demand forecasting of winter wheat, a water demand forecasting model with fewer parameters was constructed to improve the robustness of water demand forecasting,provides a more reliable method for forecasting water demand based on meteorological information.【Methods】Meteorological data of Qitai County in recent five years were selected, and the water requirement of winter wheat calculated by Penman-Monteith formula was approximately the real water requirement. Four variables including average temperature, wind speed, humidity and precipitation were taken as input parameters. The water requirement of winter wheat was forecasted, and the prediction of CNN-BiLSTM was compared with that of LSTM, BiLSTM and other 6 models. 【Results】The results showed that when a few parameters were fed into BP, RNN, LSTM, improved BiLSTM and CNN-BiLSTM models to predict water demand, the prediction effect of BP neural network was poor. In the model evaluation, CNN-BiLSTM showed an R2 improvement of about 14% over LSTM and a MSE reduction of about 3.8. 【Conclusion】CNN-BiLSTM model is more accurate in predicting wheat water demand.

Key words: winter wheat; water demand; forecast; LSTM; CNN-BiLSTM

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数:
网站
微信公众号
淘宝购买
微店购买