新疆农业科学 ›› 2024, Vol. 61 ›› Issue (8): 1821-1830.DOI: 10.6048/j.issn.1001-4330.2024.08.001
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
收稿日期:
2024-01-08
出版日期:
2024-08-20
发布日期:
2024-09-19
通信作者:
张巨松(1963-),男,江苏人,教授,博士,硕士生/博士生导师,研究方向为棉花高产栽培与生理生态,(E-mail)xjndzjs@163.com作者简介:
张承洁(1998-),女,新疆伊犁人,硕士研究生,研究方向为棉花高产栽培,(E-mail)985487211@qq.com
基金资助:
ZHANG Chengjie(), HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong()
Received:
2024-01-08
Published:
2024-08-20
Online:
2024-09-19
Correspondence author:
ZHANG Jusong (1963-), male, from Jiangsu, professor, Ph.D., master / doctoral supervisor, research direction:high-yield cultivation and physiological ecology of cotton, (E-mail)xjndzjs@163.comSupported by:
摘要:
【目的】研究不同氮肥与密度互作对海岛棉生长发育的调控效应,为海岛棉合理密植及优化施氮提供理论依据。【方法】在新疆南疆自然生态条件下,以海岛棉新78为材料,采用双因素试验设计,主区处理设2种种植密度,副区处理设4个施氮水平,研究氮肥与密度互作对海岛棉生长发育及产量和品质的影响。【结果】海岛棉的株高、茎粗、果枝台数、主茎叶片数与施氮量呈正相关,但与种植密度呈负相关。海岛棉叶片SPAD值在整个生育期随着施氮量和密度的增加而增加。不同处理下海岛棉干物质积累动态曲线均符合Logistic模型,D24N2处理的干物质积累量最大,达到22 462 kg/hm2,但D20N0处理的生殖器官干物质积累分配占比最大,达到了72%。海岛棉的单株结铃数、单铃重与施氮量呈正相关,与种植密度呈负相关,但单位面积收获株数与种植密度呈正相关,在氮肥与密度互作条件下,D24N2处理的皮棉产量与籽棉产量最高,分别比较最低的D24N0处理增加了2 251.65、774.77 kg/hm2。种植密度与施氮量对海岛棉纤维品质的各项指标影响均不显著。【结论】在新疆南疆机采棉种植模式下,种植密度为24×104株/hm2、施氮量为320 kg/hm2时,海岛棉的各项生长指标表现较好,且皮棉产量最高,达到2 122.62 kg/hm2。
中图分类号:
张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830.
ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L.[J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830.
土壤深度 Soil depth (cm) | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 碱解氮 Available nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Fast-acting potassium (mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|
0~10 | 4.622 | 0.335 | 13.776 | 9.06 | 53.88 | 8.62 |
10~20 | 9.785 | 0.597 | 25.294 | 25.36 | 97.68 | 8.76 |
20~30 | 11.176 | 0.705 | 47.563 | 40.2 | 130.8 | 8.35 |
30~40 | 8.305 | 0.494 | 30.203 | 13.13 | 91.92 | 8.53 |
40~50 | 8.57 | 0.376 | 23.735 | 10.18 | 106.12 | 8.59 |
50~60 | 9.528 | 0.722 | 35.71 | 30.23 | 116.67 | 8.67 |
60~70 | 8.933 | 0.68 | 26.751 | 16.96 | 110.62 | 8.88 |
70~80 | 6.323 | 0.336 | 10.887 | 13.02 | 101.46 | 8.52 |
表1 土壤基础肥力
Tab.1 Soil base fertility
土壤深度 Soil depth (cm) | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 碱解氮 Available nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Fast-acting potassium (mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|
0~10 | 4.622 | 0.335 | 13.776 | 9.06 | 53.88 | 8.62 |
10~20 | 9.785 | 0.597 | 25.294 | 25.36 | 97.68 | 8.76 |
20~30 | 11.176 | 0.705 | 47.563 | 40.2 | 130.8 | 8.35 |
30~40 | 8.305 | 0.494 | 30.203 | 13.13 | 91.92 | 8.53 |
40~50 | 8.57 | 0.376 | 23.735 | 10.18 | 106.12 | 8.59 |
50~60 | 9.528 | 0.722 | 35.71 | 30.23 | 116.67 | 8.67 |
60~70 | 8.933 | 0.68 | 26.751 | 16.96 | 110.62 | 8.88 |
70~80 | 6.323 | 0.336 | 10.887 | 13.02 | 101.46 | 8.52 |
氮肥处理 Nitrogen fertilizer treatment | 基肥 Base fertilizer | 追肥施氮量 Nitrogen amount of topdressing | 总施氮量 Total nitrogen application | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6月 11日 | 6月 20日 | 6月 29日 | 7月 6日 | 7月 13日 | 7月 21日 | 7月 28日 | 8月 5日 | 8月 15日 | 8月 25日 | |||
N0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
N1 | 32 | 0 | 12.8 | 12.8 | 19.2 | 19.2 | 19.2 | 19.2 | 12.8 | 12.8 | 0 | 160 |
N2 | 64 | 0 | 25.6 | 25.6 | 38.4 | 38.4 | 38.4 | 38.4 | 25.6 | 25.6 | 0 | 320 |
N3 | 96 | 0 | 38.4 | 38.4 | 57.6 | 57.6 | 57.6 | 57.6 | 38.4 | 38.4 | 0 | 480 |
表2 施肥处理
Tab.2 Fertilization treatments(kg/hm2)
氮肥处理 Nitrogen fertilizer treatment | 基肥 Base fertilizer | 追肥施氮量 Nitrogen amount of topdressing | 总施氮量 Total nitrogen application | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6月 11日 | 6月 20日 | 6月 29日 | 7月 6日 | 7月 13日 | 7月 21日 | 7月 28日 | 8月 5日 | 8月 15日 | 8月 25日 | |||
N0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
N1 | 32 | 0 | 12.8 | 12.8 | 19.2 | 19.2 | 19.2 | 19.2 | 12.8 | 12.8 | 0 | 160 |
N2 | 64 | 0 | 25.6 | 25.6 | 38.4 | 38.4 | 38.4 | 38.4 | 25.6 | 25.6 | 0 | 320 |
N3 | 96 | 0 | 38.4 | 38.4 | 57.6 | 57.6 | 57.6 | 57.6 | 38.4 | 38.4 | 0 | 480 |
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 主茎叶片数 Vane number (个) | 果枝数 Fruit branch (台) |
---|---|---|---|---|---|
D20 | N0 | 64.90c | 9.84b | 9.80d | 7.80b |
N1 | 97.00b | 12.10a | 11.60abc | 11.40a | |
N2 | 100.40b | 11.88a | 10.00dc | 12.10a | |
N3 | 102.20ab | 12.31a | 12.40ab | 11.90a | |
D24 | N0 | 49.00d | 8.29c | 7.20e | 6.60b |
N1 | 95.30b | 11.13a | 11.00bcd | 10.30a | |
N2 | 95.70b | 11.18a | 10.20dc | 10.50a | |
N3 | 109.10a | 12.20a | 13.20a | 11.50a | |
密度Density(D) | ** | * | ns | * | |
施氮量 Amount of nitrogen applied(N) | ** | ** | ** | * | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ** | ns | * | ns |
表3 不同处理下海岛棉吐絮期农艺性状的变化
Tab.3 Changes of agronomic characteristics of island cotton during the opening period under different treatments
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 主茎叶片数 Vane number (个) | 果枝数 Fruit branch (台) |
---|---|---|---|---|---|
D20 | N0 | 64.90c | 9.84b | 9.80d | 7.80b |
N1 | 97.00b | 12.10a | 11.60abc | 11.40a | |
N2 | 100.40b | 11.88a | 10.00dc | 12.10a | |
N3 | 102.20ab | 12.31a | 12.40ab | 11.90a | |
D24 | N0 | 49.00d | 8.29c | 7.20e | 6.60b |
N1 | 95.30b | 11.13a | 11.00bcd | 10.30a | |
N2 | 95.70b | 11.18a | 10.20dc | 10.50a | |
N3 | 109.10a | 12.20a | 13.20a | 11.50a | |
密度Density(D) | ** | * | ns | * | |
施氮量 Amount of nitrogen applied(N) | ** | ** | ** | * | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ** | ns | * | ns |
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 方程 Equation | t0 (d) | t1 (d) | t2 (d) | Δt (d) | Vm (kg/ (d·hm2)) | GT (kg/hm2) | R2 |
---|---|---|---|---|---|---|---|---|---|
D20 | N0 | Y=9 631.34/[(1+e(5.72-0.082 t)] | 70.01 | 53.88 | 86.13 | 32.25 | 196.68 | 6 342.23 | 0.997 6 |
N1 | Y=15 296.87/[1+e(5.38-0.063 t)] | 85.06 | 64.25 | 105.88 | 41.63 | 241.98 | 10 072.99 | 0.992 6 | |
N2 | Y=17 818.39/[1+e(4.70-0.055 t)] | 85.77 | 61.74 | 109.80 | 48.06 | 244.16 | 11 733.41 | 0.995 4 | |
N3 | Y=17 361.52/[1+e(5.93-0.064 t)] | 92.25 | 71.76 | 112.73 | 40.97 | 279.02 | 11 432.56 | 0.999 8 | |
D24 | N0 | Y=11 918.68/[1+e(4.57-0.056 t)) | 81.84 | 58.26 | 105.42 | 47.16 | 166.42 | 7 848.45 | 0.989 3 |
N1 | Y=22 939.28/[1+e(4.07-0.038 t)] | 106.66 | 72.17 | 141.14 | 68.97 | 219.02 | 15 105.52 | 0.995 6 | |
N2 | Y=25 402.54/[1+e(3.85-0.037 t)] | 105.13 | 69.16 | 141.10 | 71.94 | 232.53 | 16 727.57 | 0.969 0 | |
N3 | Y=22 791.84/[1+e(4.42-0.044 t)] | 99.91 | 70.13 | 129.68 | 59.55 | 252.03 | 15 008.43 | 0.964 1 |
表4 海岛棉干物质积累的Logistic模型及其特征值
Tab.4 Logistic model of dry matter accumulation of island cotton and its characteristic values
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 方程 Equation | t0 (d) | t1 (d) | t2 (d) | Δt (d) | Vm (kg/ (d·hm2)) | GT (kg/hm2) | R2 |
---|---|---|---|---|---|---|---|---|---|
D20 | N0 | Y=9 631.34/[(1+e(5.72-0.082 t)] | 70.01 | 53.88 | 86.13 | 32.25 | 196.68 | 6 342.23 | 0.997 6 |
N1 | Y=15 296.87/[1+e(5.38-0.063 t)] | 85.06 | 64.25 | 105.88 | 41.63 | 241.98 | 10 072.99 | 0.992 6 | |
N2 | Y=17 818.39/[1+e(4.70-0.055 t)] | 85.77 | 61.74 | 109.80 | 48.06 | 244.16 | 11 733.41 | 0.995 4 | |
N3 | Y=17 361.52/[1+e(5.93-0.064 t)] | 92.25 | 71.76 | 112.73 | 40.97 | 279.02 | 11 432.56 | 0.999 8 | |
D24 | N0 | Y=11 918.68/[1+e(4.57-0.056 t)) | 81.84 | 58.26 | 105.42 | 47.16 | 166.42 | 7 848.45 | 0.989 3 |
N1 | Y=22 939.28/[1+e(4.07-0.038 t)] | 106.66 | 72.17 | 141.14 | 68.97 | 219.02 | 15 105.52 | 0.995 6 | |
N2 | Y=25 402.54/[1+e(3.85-0.037 t)] | 105.13 | 69.16 | 141.10 | 71.94 | 232.53 | 16 727.57 | 0.969 0 | |
N3 | Y=22 791.84/[1+e(4.42-0.044 t)] | 99.91 | 70.13 | 129.68 | 59.55 | 252.03 | 15 008.43 | 0.964 1 |
图3 不同处理海岛棉生殖器官与营养器官干物质分配的动态变化
Fig.3 Changes of dynamic changes of dry matter distribution between genital organs and vegetative organs of cotton on different treatments
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 收获株数 Number of plants harvested (104株/hm2) | 单株结铃数 Boll number per plant (个) | 单铃重 Single boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Cotton seed yield (kg/hm2) | 皮棉产量 Cotton lint yield (kg/hm2) |
---|---|---|---|---|---|---|---|
D20 | N0 | 18.35b | 8.45d | 2.71ab | 34.72a | 4 223.77b | 1 464.60c |
N1 | 17.77bc | 10.41a | 3.10ab | 34.00a | 5 716.54a | 1 942.80ab | |
N2 | 17.48c | 10.32a | 3.10ab | 34.23a | 5 614.65a | 1 922.19ab | |
N3 | 18.51b | 9.52ab | 3.25a | 32.98a | 5 737.66a | 1 893.83ab | |
D24 | N0 | 22.31a | 7.12e | 2.46b | 34.33a | 3 939.40b | 1 347.85c |
N1 | 21.75a | 8.33d | 3.24a | 32.98a | 5 869.75a | 1 939.97ab | |
N2 | 22.18a | 9.23cd | 3.03ab | 34.29a | 6 191.05a | 2 122.62a | |
N3 | 21.89a | 8.94cd | 3.13ab | 32.96a | 6 125.31a | 2 022.49a | |
密度 Density(D) | ** | ** | ns | ns | ns | ns | |
施氮量 Amount of nitrogen applied(N) | ns | ** | ** | * | * | * | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ns | ns | ns | ns | ns | ns |
表5 不同处理下海岛棉产量及产量构成因子的变化
Tab.5 Changes of island cotton yield and yield composition factors under different treatments
种植密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 收获株数 Number of plants harvested (104株/hm2) | 单株结铃数 Boll number per plant (个) | 单铃重 Single boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Cotton seed yield (kg/hm2) | 皮棉产量 Cotton lint yield (kg/hm2) |
---|---|---|---|---|---|---|---|
D20 | N0 | 18.35b | 8.45d | 2.71ab | 34.72a | 4 223.77b | 1 464.60c |
N1 | 17.77bc | 10.41a | 3.10ab | 34.00a | 5 716.54a | 1 942.80ab | |
N2 | 17.48c | 10.32a | 3.10ab | 34.23a | 5 614.65a | 1 922.19ab | |
N3 | 18.51b | 9.52ab | 3.25a | 32.98a | 5 737.66a | 1 893.83ab | |
D24 | N0 | 22.31a | 7.12e | 2.46b | 34.33a | 3 939.40b | 1 347.85c |
N1 | 21.75a | 8.33d | 3.24a | 32.98a | 5 869.75a | 1 939.97ab | |
N2 | 22.18a | 9.23cd | 3.03ab | 34.29a | 6 191.05a | 2 122.62a | |
N3 | 21.89a | 8.94cd | 3.13ab | 32.96a | 6 125.31a | 2 022.49a | |
密度 Density(D) | ** | ** | ns | ns | ns | ns | |
施氮量 Amount of nitrogen applied(N) | ns | ** | ** | * | * | * | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ns | ns | ns | ns | ns | ns |
密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 上半部平均长度 Average length of the upper half(mm) | 整齐度 Neatness (%) | 断裂比强度 Breaking ratio strength (CN/tex) | 断裂伸长率 Elongation at break (%) | 马克隆值 Macron value |
---|---|---|---|---|---|---|
D20 | N0 | 39.11c | 89.36a | 47.24a | 8.62a | 4.49ab |
N1 | 39.35bc | 89.87a | 47.66a | 9.37a | 4.42ab | |
N2 | 39.49bc | 89.97a | 47.69a | 9.27a | 4.28ab | |
N3 | 40.52a | 90.54a | 47.46a | 9.28a | 4.47ab | |
D24 | N0 | 39.23bc | 89.54a | 45.57a | 8.50a | 4.27ab |
N1 | 40.88a | 90.99a | 48.27a | 9.00a | 4.60a | |
N2 | 39.52bc | 89.97a | 47.87a | 9.08a | 4.22b | |
N3 | 40.54a | 90.97a | 47.57a | 9.36a | 4.51ab | |
密度 Density(D) | ns | ns | ns | ns | ns | |
施氮量 Amount of nitrogen applied(N) | * | ns | ns | ns | ns | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ns | ns | ns | ns | ns |
表6 不同处理下海岛棉纤维品质的变化
Tab.6 Changes of fiber quality of island cotton from different treatments
密度 Planting density (104株/hm2) | 施氮量 Amount of nitrogen applied (kg/hm2) | 上半部平均长度 Average length of the upper half(mm) | 整齐度 Neatness (%) | 断裂比强度 Breaking ratio strength (CN/tex) | 断裂伸长率 Elongation at break (%) | 马克隆值 Macron value |
---|---|---|---|---|---|---|
D20 | N0 | 39.11c | 89.36a | 47.24a | 8.62a | 4.49ab |
N1 | 39.35bc | 89.87a | 47.66a | 9.37a | 4.42ab | |
N2 | 39.49bc | 89.97a | 47.69a | 9.27a | 4.28ab | |
N3 | 40.52a | 90.54a | 47.46a | 9.28a | 4.47ab | |
D24 | N0 | 39.23bc | 89.54a | 45.57a | 8.50a | 4.27ab |
N1 | 40.88a | 90.99a | 48.27a | 9.00a | 4.60a | |
N2 | 39.52bc | 89.97a | 47.87a | 9.08a | 4.22b | |
N3 | 40.54a | 90.97a | 47.57a | 9.36a | 4.51ab | |
密度 Density(D) | ns | ns | ns | ns | ns | |
施氮量 Amount of nitrogen applied(N) | * | ns | ns | ns | ns | |
密度×施氮量(D×N) Density×Amount of nitrogen applied | ns | ns | ns | ns | ns |
[1] |
王为然, 朱家辉, 孙友文, 等. 新疆喀什超级长绒棉再创高产[J]. 中国棉花, 2020, 47(9): 31-33.
DOI |
WANG Weiran, ZHU Jiahui, SUN Youwen, et al. The seed yield of sea-island cotton reached A new high in Kashgar, Xinjiang[J]. China Cotton, 2020, 47(9): 31-33.
DOI |
|
[2] | 马云珍. 连续定点定量施氮对棉花生长发育、氮肥利用及氮素营养指数的影响[D]. 乌鲁木齐: 新疆农业大学, 2021. |
MA Yunzhen. Effects of Continuous Fixed-Point and Quantitative Nitrogen Application on Cotton Growth and Nitrogen Use Efficiency[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[3] | Snider J, Harris G, Roberts P, et al. Cotton physiological and agronomic response to nitrogen application rate[J]. Field Crops Research, 2021, (270): 108194. |
[4] | 杨涛, 马兴旺, 刘骅, 等. 新疆棕漠土棉田施N水平对棉花产量和品质及光合特性的影响[J]. 中国农学通报, 2009, 25(23): 238-243. |
YANG Tao, MA Xingwang, LIU Hua, et al. Xinjiang cotton brown desert soil application of N levels to cotton yield and quality and photosynthetic trait[J]. Chinese Agricultural Science Bulletin, 2009, 25(23): 238-243.
DOI |
|
[5] | Rochester I J, Peoples M B, Hulugalle N R, et al. Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems[J]. Field Crops Research, 2001, 70(1): 27-41. |
[6] | 王培培. 播期和密度对棉花根茎非结构性碳再动员、成铃分布及产量的影响[D]. 南昌: 江西农业大学, 2021. |
WANG Peipei. Effects of Sowing Date and Density on Non-Structural Carbohydrate Remobilization with Roots and Stems, boll Distribution and Yield in Cotton[D]. Nanchang: Jiangxi Agricultural University, 2021. | |
[7] |
陈玉梁, 石有太, 罗俊杰, 等. 干旱胁迫对彩色棉花农艺、品质性状和水分利用效率的影响[J]. 作物学报, 2013, 39(11): 2074-2082.
DOI |
CHEN Yuliang, SHI Youtai, LUO Junjie, et al. Effect of drought stress on agronomic traits, quality, and WUE in different colored upland cotton varieties(lines)[J]. Acta Agronomica Sinica, 2013, 39(11): 2074-2082.
DOI |
|
[8] | 张昊, 林涛, 尔晨, 等. 配置模式对南疆机采棉生长发育及产量形成的调控效应[J]. 新疆农业大学学报, 2018, 41(5): 307-313. |
ZHANG Hao, LIN Tao, ER Chen, et al. Effects of planting patterns on growth and yield formation for machine-picked cotton in southern Xinjiang[J]. Journal of Xinjiang Agricultural University, 2018, 41(5): 307-313. | |
[9] |
张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
DOI |
ZHANG Te, WANG Mifeng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton[J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
DOI |
|
[10] | 王海洋, 王为, 高进, 等. 不同施氮量对短季棉生长发育及产量构成的影响[J]. 江苏农业科学, 2020, 48(10): 109-113. |
WANG Haiyang, WANG Wei, GAO Jin, et al. Influences of different nitrogen application rates on growth and yield components of short season cotton[J]. Jiangsu Agricultural Sciences, 2020, 48(10): 109-113. | |
[11] | 石洪亮, 张巨松, 严青青, 等. 施氮量对南疆机采棉生长特性及产量的影响[J]. 西北农业学报, 2017, 26(3): 397-404. |
SHI Hongliang, ZHANG Jusong, YAN Qingqing, et al. Effects of nitrogen application rates on growth characteristics and yield of machine-picking cotton in South Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(3): 397-404. | |
[12] |
王彦辉, 樊永强, 韩燕丽, 等. 种植密度对豫农棉31产量和品质的影响[J]. 中国棉花, 2021, 48(12): 20-22.
DOI |
WANG Yanhui, FAN Yongqiang, HAN Yanli, et al. Effects of planting density on the yield and fiber quality of Yunongmian 31[J]. China Cotton, 2021, 48(12): 20-22.
DOI |
|
[13] |
戴茂华, 吴振良, 刘丽英, 等. 种植密度对棉花生育动态、产量和品质的影响[J]. 华北农学报, 2014, 29(S1): 146-154.
DOI |
DAI Maohua, WU Zhenliang, LIU Liying, et al. Influence of planting density on development, yield and quality of upland cotton[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(S1): 146-154. | |
[14] |
郭仁松, 刘盼, 张巨松, 等. 南疆超高产棉花光合物质生产与分配关系的研究[J]. 棉花学报, 2010, 22(5): 471-478.
DOI |
GUO Rensong, LIU Pan, ZHANG Jusong, et al. Study on relations on photosynthetic production and its distribution of super high-yield cotton in South Xinjiang[J]. Cotton Science, 2010, 22(5): 471-478. | |
[15] | 罗新宁, 陈冰, 张巨松, 等. 南疆地区不同施氮量棉花叶片光合特性及产量表现[J]. 干旱地区农业研究, 2011, 29(2): 40-44, 82. |
LUO Xinning, CHEN Bing, ZHANG Jusong, et al. Photosynthetic characteristics and yield of cotton under different nitrogen application rate in Southen Xinjiang[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 40-44, 82. | |
[16] | 张娜, 冯璐, 李玲, 等. 不同种植密度对南疆机采棉叶片生理特性及产量的影响[J]. 中国农业大学学报, 2021, 26(5): 22-29. |
ZHANG Na, FENG Lu, LI Ling, et al. Effect of planting density on leaf physiological characteristic and yield of machine picked cotton in Southern Xinjiang[J]. Journal of China Agricultural University, 2021, 26(5): 22-29. | |
[17] |
马腾飞, 李杰, 陈志, 等. 施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响[J]. 新疆农业科学, 2020, 57(2): 245-253.
DOI |
MA Tengfei, LI Jie, CHEN Zhi, et al. Simulating effects of nitrogen application on growth and development and soil nitrate nitrogen of cotton under mulched drip irrigation[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 245-253.
DOI |
|
[18] |
王士红, 杨中旭, 史加亮, 等. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
DOI |
WANG Shihong, YANG Zhongxu, SHI Jialiang, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
DOI |
|
[19] | 鲍城帆, 赵红梅, 邓朋飞, 等. 氮肥用量对哈密市棉花氮素吸收及产量的影响[J]. 新疆农业大学学报, 2022, 45(1): 55-62. |
BAO Chengfan, ZHAO Hongmei, DENG Pengfei, et al. Effects of nitrogen application rate on the nitrogen absorption and yield of cotton in Hami city[J]. Journal of Xinjiang Agricultural University, 2022, 45(1): 55-62. | |
[20] | Lehrsch G A, Brown B, Lentz R D, et al. Compost and manure effects on sugarbeet nitrogen uptake, nitrogen recovery, and nitrogen use efficiency[J]. Agronomy Journal, 2015, 107(3): 1155-1166. |
[21] | Bednarz C W, Shurley W D, Anthony W S, et al. Yield, quality, and profitability of cotton produced at varying plant densities[J]. Agronomy Journal, 2005, 97(1): 235-240. |
[22] | Dong H Z, Li W J, Tang W, et al. Effects of genotypes and plant density on yield, yield components and photosynthesis in bt transgenic cotton[J]. Journal of Agronomy and Crop Science, 2006, 192(2): 132-139. |
[23] | 李鹏程, 董合林, 刘爱忠, 等. 种植密度氮肥互作对棉花产量及氮素利用效率的影响[J]. 农业工程学报, 2015, 31(23): 122-130. |
LI Pengcheng, DONG Helin, LIU Aizhong, et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122-130. | |
[24] | 娄善伟, 高云光, 郭仁松, 等. 不同栽培密度对棉花植株养分特征及产量的影响[J]. 植物营养与肥料学报, 2010, 16(4): 953-958. |
LOU Shanwei, GAO Yunguang, GUO Rensong, et al. Effects of planting density on nutrition characteristics and yield of cotton[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 953-958. | |
[25] | 辛明华, 王占彪, 李小飞, 等. 南疆棉区机采种植模式下棉花种植密度研究[J]. 山东农业科学, 2020, 52(1): 46-52. |
XIN Minghua, WANG Zhanbiao, LI Xiaofei, et al. Study on suitable planting density of cotton under machine-picked planting mode in South Xinjiang[J]. Shandong Agricultural Sciences, 2020, 52(1): 46-52. | |
[26] | Ma K, Wang Z H, Li H Q, et al. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton[J]. Agricultural Water Management, 2022, (264): 107512. |
[27] |
郭小琰, 孙桂兰, 熊世武, 等. 施氮量对棉花养分吸收利用及产量和品质的影响[J]. 新疆农业科学, 2021, 58(7): 1246-1254.
DOI |
GUO Xiaoyan, SUN Guilan, XIONG Shiwu, et al. Effects of nitrogen application rates on nutrition uptake and utilization, yield and fiber quality of cotton[J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1246-1254.
DOI |
|
[28] | 周永萍, 杜海英, 田海燕, 等. 不同种植密度对棉花生长结铃及产量品质的影响[J]. 干旱区资源与环境, 2018, 32(4): 95-99. |
ZHOU Yongping, DU Haiying, TIAN Haiyan, et al. The influence of different planting densities on growth and yield of cotton[J]. Journal of Arid Land Resources and Environment, 2018, 32(4): 95-99. |
[1] | 杨明花, 廖必勇, 刘强, 彭云承, 达吾来·杰克山, 冯国瑞, 唐式敏. 鲜食糯玉米籽粒营养品质的差异变化分析[J]. 新疆农业科学, 2024, 61(9): 2087-2093. |
[2] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[3] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[4] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[5] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[6] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[7] | 刘晶, 杜明川, 张文婷, 鲍海娟, 景美玲, 杜文华. 青海不同地区小黑麦种质的筛选[J]. 新疆农业科学, 2024, 61(9): 2183-2190. |
[8] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[9] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[10] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[11] | 乔雅洁, 付慧鑫, 乔雪, 孟新涛, 张婷, 潘俨. 不同贮藏温度条件下鲜牛肉品质的变化规律[J]. 新疆农业科学, 2024, 61(9): 2323-2329. |
[12] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[13] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[14] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[15] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||