新疆农业科学 ›› 2024, Vol. 61 ›› Issue (10): 2351-2357.DOI: 10.6048/j.issn.1001-4330.2024.10.002
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
赵康1(), 程蓉蓉2, 庞博1, 张梦媛1, 张茹1, 王勇攀1, 杨志宁1, 王志3, 王红刚1, 高文伟1()
收稿日期:
2024-04-06
出版日期:
2024-10-20
发布日期:
2024-11-07
通信作者:
高文伟(1973-),男,新疆人,教授,博士,硕士生/博士生导师,研究方向作物遗传育种,(E-mail)280594606@qq.com作者简介:
赵康(1998-),男,新疆人,硕士研究生,研究方向为作物遗传育种,(E-mail)zhaokang07@yeah.net
基金资助:
ZHAO Kang1(), CHENG Rongrong2, PANG Bo1, ZHANG Mengyuan1, ZHANG Ru1, WANG Yongpan1, YANG Zhining1, WANG Zhi3, WANG Honggang1, GAO Wenwei1()
Received:
2024-04-06
Published:
2024-10-20
Online:
2024-11-07
Correspondence author:
GAO Wenwei (1973-), male, from Xinjiang, Professor, Ph.D., Master/Doctoral' s supervisor instructor, research direction:crop genetics and breeding, (E-mail) 280594606@qq.comSupported by:
摘要:
【目的】 研究棉花苗期响应盐胁迫的应答机制,为棉花耐盐品种筛选提供依据。【方法】 对耐盐型棉花和敏感型棉花三叶期幼苗进行200 mM NaCl胁迫处理,观察NaCl处理下0、48 h和复水48 h的棉花叶片显微结构并分析生理生化指标。【结果】 耐盐型和敏感型棉花幼苗在NaCl胁迫0~48 h叶片和茎秆逐渐软化,敏感型幼苗在NaCl处理下子叶枯萎并凋落,真叶叶缘轻微焦化。NaCl处理下,棉花叶片丙二醛浓度显著升高,叶绿素含量和超氧化物歧化酶活性均显著降低。经复水处理,耐盐型和敏感型棉花均得到一定的恢复,丙二醛浓度降低,而叶绿素含量、超氧化物歧化酶活性和过氧化物酶活性均升高。盐胁迫条件下,耐盐型和敏感型的棉花叶片厚度、栅栏组织厚度和海绵组织厚度均下降,且敏感型材料SS型下降幅度较大,与正常条件下差异显著,但2个材料在复水后均有所恢复,且耐盐型材料恢复更好。【结论】 NaCl处理48 h不仅对棉花的生理生化水平有影响,还诱导细胞和组织发生结构性的改变,复水能有效缓解盐胁迫下棉花的生理生化水平。耐盐型棉花材料比敏感型材料具有更强的耐盐性和复水后恢复更快。
中图分类号:
赵康, 程蓉蓉, 庞博, 张梦媛, 张茹, 王勇攀, 杨志宁, 王志, 王红刚, 高文伟. 盐胁迫及复水对棉花叶片生理生化和显微结构的影响[J]. 新疆农业科学, 2024, 61(10): 2351-2357.
ZHAO Kang, CHENG Rongrong, PANG Bo, ZHANG Mengyuan, ZHANG Ru, WANG Yongpan, YANG Zhining, WANG Zhi, WANG Honggang, GAO Wenwei. Effects of salt stress and re-watering on the physiology, biochemistry and microstructure of cotton leaf structure[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2351-2357.
图2 棉花幼苗盐胁迫和复水后的生理响应 注:相同的字母表示处理间差异不显著,字母相同表示差异显著(P<0.05,LSD 法)
Fig.2 Physiological response of cotton seedlings to salt stress and re-watering Note: The same letter means no significant difference between treatments, and the same letter means significant difference (P< 0.05, LSD method)
图3 盐胁迫和复水后的棉花叶片显微结构 注:Up:上表皮;Pt:栅栏组织;ST型:海绵组织;Le:下表皮
Fig.3 Cotton leaf micro structure after salt stress and re-watering Notes:Up: Upper epidermis; Pt: Palisade tissue; st: Spongy tissue; Le: Lower epidermis
品种 Varieties | 处理 Treatments | 叶片厚度 Thickness of leaf (μm) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 海绵组织厚度 Thickness of spongy tissue (μm) | 上表皮厚度 Thickness of upper epidermis (μm) | 下表皮厚度 Thickness of lower epidermis (μm) |
---|---|---|---|---|---|---|
ST型 ST Type | CK | 246.38±4.07a | 86.00±2.94a | 108.99±2.94ab | 28.54±4.06ab | 21.87±2.71a |
NaCl | 206.54±25.05ab | 88.87±12.92ab | 88.87±12.92abc | 25.77±2.18a | 18.62±1.74abc | |
RW | 248.67±56.35a | 112.71±37.92a | 112.71±37.92a | 29.19±2.04a | 16.21±2.90c | |
SS型 SS Type | CK | 247.17±23.64a | 111.30±15.61a | 111.30±15.61a | 25.19±4.31b | 20.66±1.24ab |
NaCl | 167.01±31.27b | 65.55±11.22b | 65.55±11.22bc | 25.58±1.06ab | 18.27±2.12abc | |
RW | 176.47±11.23b | 75.09±6.78b | 75.09±6.78c | 25.60±7,77ab | 16.66±1.94bc |
表1 盐胁迫下及复水后棉花幼苗叶表皮结构变化
Tab.1 Changes of leaf epidermis structure of cotton seedlings under salt stress and after re-watering
品种 Varieties | 处理 Treatments | 叶片厚度 Thickness of leaf (μm) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 海绵组织厚度 Thickness of spongy tissue (μm) | 上表皮厚度 Thickness of upper epidermis (μm) | 下表皮厚度 Thickness of lower epidermis (μm) |
---|---|---|---|---|---|---|
ST型 ST Type | CK | 246.38±4.07a | 86.00±2.94a | 108.99±2.94ab | 28.54±4.06ab | 21.87±2.71a |
NaCl | 206.54±25.05ab | 88.87±12.92ab | 88.87±12.92abc | 25.77±2.18a | 18.62±1.74abc | |
RW | 248.67±56.35a | 112.71±37.92a | 112.71±37.92a | 29.19±2.04a | 16.21±2.90c | |
SS型 SS Type | CK | 247.17±23.64a | 111.30±15.61a | 111.30±15.61a | 25.19±4.31b | 20.66±1.24ab |
NaCl | 167.01±31.27b | 65.55±11.22b | 65.55±11.22bc | 25.58±1.06ab | 18.27±2.12abc | |
RW | 176.47±11.23b | 75.09±6.78b | 75.09±6.78c | 25.60±7,77ab | 16.66±1.94bc |
[1] | Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species[J]. BMC Plant Biology, 2019, 19(1): 388. |
[2] |
Wang J, Jiang X, Zhao C F, et al. Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of Zygophyllum spp[J]. BMC Plant Biology, 2020, 20(1): 9.
DOI PMID |
[3] |
Li X W, Zheng H L, Wu W S, et al. QTL mapping and candidate gene analysis for alkali tolerance in japonica rice at the bud stage based on linkage mapping and genome-wide association study[J]. Rice, 2020, 13(1): 48.
DOI PMID |
[4] | 赵起越, 夏夜, 邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119. |
ZHAO Qiyue, XIA Ye, ZOU Bendong. Causes, harm and recovery of soil salinization[J]. Agriculture and Technology, 2022, 42(11): 115-119. | |
[5] | 努尔沙吾列·哈斯木汉. 新疆土壤盐渍化成因及其防治对策[J]. 科学技术创新, 2020, (9): 52-53. |
Nuershawulie Hasimuhan. Causes of soil salinization in Xinjiang and its control countermeasures[J]. Scientific and Technological Innovation, 2020, (9): 52-53. | |
[6] | Zhao H X, Gu B J, Chen D C, et al. Physicochemical properties and salinization characteristics of soils in coastal land reclamation areas: a case study of China-Singapore Tianjin Eco-City[J]. Heliyon, 2022, 8(12): e12629. |
[7] | Rogers P P, Llamas M R, Martínez-Cortina L. Water Crisis: Myth Or Reality[M]. Taylor and Francis, CRC Press. |
[8] |
van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.
DOI PMID |
[9] | Zhang B L, Chen X G, Lu X K, et al. Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance[J]. Scientific Reports, 2018, 8: 13527. |
[10] | Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.)[J]. Industrial Crops and Products, 2009, 30(3): 351-358. |
[11] |
Byrt C S, Munns R, Burton R A, et al. Root cell wall solutions for crop plants in saline soils[J]. Plant Science, 2018, 269: 47-55.
DOI PMID |
[12] | Geng G, Li R R, Stevanato P, et al. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses[J]. Frontiers in Plant Science, 2020, 11: 571864. |
[13] |
卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望[J]. 中国农业科学, 2018, 51(1): 26-36.
DOI |
LU Xiuru, JIA Xiaoyue, NIU Jiahui. The present situation and prospects of cotton industry development in China[J]. Scientia Agricultura Sinica, 2018, 51(1): 26-36.
DOI |
|
[14] | 史晓玲. 国家、生态、技术、市场——棉花与鲁西北社会变迁(1906-2006)[D]. 济南: 山东大学, 2020. |
SHI Xiaoling. Country, Ecology, Technology and Market: Cotton and Social changes in Northwest Shandong(1906-2006)[D]. Jinan: Shandong University, 2020. | |
[15] | 吴方卫, 张锦华. 丝绸之路经济带农牧业合作的空间、潜力与中国农业“走出去” 策略[J]. 科学发展, 2016, (4): 76-81. |
WU Fangwei, ZHANG Jinhua. Space and potential for husbandry cooperation in silk road economic belt and “going out” strategy of Chinese agriculture[J]. Scientific Development, 2016, (4): 76-81. | |
[16] | 苏莹, 郭安慧, 华金平. 棉花耐盐性鉴定方法探讨[J]. 中国农业大学学报, 2021, 26(12): 11-19. |
SU Ying, GUO Anhui, HUA Jinping. Strategies for evaluation the salt tolerance in cotton[J]. Journal of China Agricultural University, 2021, 26(12): 11-19. | |
[17] | 孙小芳, 刘友良, 陈沁. 棉花耐盐性研究进展[J]. 棉花学报, 1998, 10(3): 118-124. |
SUN Xiaofang, LIU Youliang, CHEN Qin. Recent progresses in studies on salinity tolerence in cotton[J]. Cotton Science, 1998, 10(3): 118-124. | |
[18] | Maryum Zahra, Luqman Tahira, Nadeem Sahar, et al. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton [J]. Frontiers in Plant Science, 2022, 13. |
[19] | Fu H Q, Yang Y Q. How Plants Tolerate Salt Stress[J], 2023, 45(7):.5914-5934. |
[20] | 毛桂莲, 许兴, 徐兆桢. 植物耐盐生理生化研究进展[J]. 中国生态农业学报, 2004, 12(1): 43-46. |
MAO Guilian, XU Xing, XU Zhaozhen. Advances in physiological and biochemical research of salt tolerance in plant[J]. Chinese Journal of Eco-Agriculture, 2004, 12(1): 43-46. | |
[21] | Hasanuzzaman M, Oku H, Nahar K, et al. Nitric oxide-induced saltstress tolerance in plants: ROS metabolism, signaling, and molecular interactions[J]. Plant Biotechnology Reports, 2018, 12(2): 77-92. |
[22] |
段慧荣, 周学辉, 胡静, 等. 高等植物K+吸收及转运的分子机制研究进展[J]. 草业学报, 2019, 28(9): 174-191.
DOI |
DUAN Huirong, ZHOU Xuehui, HU Jing, et al. Advances in understanding molecular mechanisms of K+ uptake and transport in higher plants[J]. Acta Prataculturae Sinica, 2019, 28(9): 174-191.
DOI |
|
[23] | Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress[J]. Plant, Cell & Environment, 2010, 33(4): 552-565. |
[24] |
李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对无芒雀麦幼苗叶片形态及解剖结构的影响[J]. 草地学报, 2022, 30(6): 1450-1459.
DOI |
LI Ruiqiang, WANG Yuxiang, SUN Yulan, et al. Effects of salt stress on leaf morphology and anatomical structure of Bromus inermis seedlings[J]. Acta Agrestia Sinica, 2022, 30(6): 1450-1459.
DOI |
|
[25] |
李双男, 郭慧娟, 侯振安. 不同盐碱胁迫对棉花离子组稳态及Na+相关基因表达影响[J]. 棉花学报, 2019, 31(6): 515-528.
DOI |
LI Shuangnan, GUO Huijuan, HOU Zhen’an. Ionic homeostasis and expression of Na+ related genes of cotton under different salt and alkali stresses[J]. Cotton Science, 2019, 31(6): 515-528. | |
[26] | Hameed M, Ashraf M, Naz N. Anatomical adaptations to salinity in cogon grass[Imperata cylindrica (L.) Raeuschel]from the Salt Range, Pakistan[J]. Plant and Soil, 2009, 322(1): 229-238. |
[27] |
赵海燕, 王建设, 刘林强, 等. 海岛棉苗期盐胁迫下形态学和生理学指标变化[J]. 中国农业科学, 2017, 50(18): 3494-3505.
DOI |
ZHAO Haiyan, WANG Jianshe, LIU Linqiang, et al. Morphological and physiological mechanism of salt tolerance in Gossypium barbadense to salt stress at seedling stage[J]. Scientia Agricultura Sinica, 2017, 50(18): 3494-3505. | |
[28] | Azeem A, Wu Y Y, Xing D K, et al. Photosynthetic response of two okra cultivars under salt stress and re-watering[J]. Journal of Plant Interactions, 2017, 12(1): 67-77. |
[29] | Du L, Cai C P, Wu S, et al. Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.)[J]. PLoS One, 2016, 11(3): e0151076. |
[30] | 范蓉. 基于生理指标与基因表达量评价棉花抗旱耐盐性[D]. 乌鲁木齐: 新疆农业大学, 2020. |
FAN Rong. Evaluation of Cotton Drought and Salt Tolerance Based on Physiological Indexes and Gene Expression[D]. Urumqi: Xinjiang Agricultural University, 2020. | |
[31] | 李娜. 不同基因型大白菜对盐碱胁迫的响应特性[D]. 泰安: 山东农业大学, 2022. |
LI Na. Response Characteristics of Different Genotype Chinese Cabbages to Salt and Alkali Stress[D]. Taian: Shandong Agricultural University, 2022. | |
[32] | 叶武威. 棉花种质的耐盐性及其耐盐基因表达的研究[D]. 北京: 中国农业科学院, 2007. |
YE Wuwei. Study on the Salinity Resistance and Resistance Gene Expression in Cotton Germplasm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. | |
[33] | 王德龙. 盐胁迫下棉花细胞壁重塑相关基因GhEXLB1与GhGRP1功能研究[D]. 乌鲁木齐: 新疆农业大学, 2021. |
WANG Delong. Study on the Function of GhEXLB1 and GhGRP1 Genes Related to Cell Wall Remodeling in Cotton under Salt Stress[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[34] | 袁雨豪. 盐胁迫下糜子的生理响应及适应机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
YUAN Yuhao. Study on Physiological Response and Adaptive Mechanism of Broomcorn Millet(Panicum Miliaceum L.)Under Salt Stress[D]. Yangling: Northwest A & F University, 2022. | |
[35] | 石亚飞, 闵炜芳, 摆小蓉, 等. 外源物调节碱胁迫水稻生理特性及相关基因表达的效应[J]. 植物营养与肥料学报, 2023, 29(5): 813-825. |
SHI Yafei, MIN Weifang, BAI Xiaorong, et al. Effects of exogenous regulatory substances on physiological characteristics and gene expression of rice seedlings under alkali stress[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 813-825. | |
[36] |
Zhao B Q, Liu Q Y, Wang B S, et al. Roles of phytohormones and their signaling pathways in leaf development and stress responses[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3566-3584.
DOI PMID |
[37] | 彭振. 棉花苗期耐盐和耐热的生理机制及其基因转录调控分析[D]. 雅安: 四川农业大学, 2016. |
PENG Zhen. The Gene Transcriptional Regulation Analysis and Physiology Mechanism of Salt Tolerance and Thermotolerance at Seedling Stage in Upland Cotton[D]. Yaan: Sichuan Agricultural University, 2016. |
[1] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[2] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[3] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[4] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[5] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[6] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[7] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[8] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[9] | 李金瑶, 徐贵青, 王立生, 吕平, 石东方, 郑伟华. 氮肥对头状沙拐枣幼苗抗旱性的影响[J]. 新疆农业科学, 2024, 61(9): 2330-2340. |
[10] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[11] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[12] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[13] | 姚庆, 王杰花, 西尔娜依·阿不都拉, 地力木拉提·吐拉洪, 崔宏亮. 低温胁迫下不同藜麦品种苗期的生理响应[J]. 新疆农业科学, 2024, 61(7): 1597-1604. |
[14] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[15] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||