新疆农业科学 ›› 2024, Vol. 61 ›› Issue (10): 2374-2387.DOI: 10.6048/j.issn.1001-4330.2024.10.005
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
李池1(), 陈刚2(), 杨继革2, 杨庭瑞1, 赵经华1(), 马明杰1
收稿日期:
2023-07-30
出版日期:
2024-10-20
发布日期:
2024-11-07
通信作者:
赵经华(1979-),男,新疆奇台人,教授,博士,硕士生/博士生导师,研究方向为节水灌溉理论和作物高效用水,(E-mail)105512275@qq.com;作者简介:
李池(1995-),男,河北邢台人,硕士研究生,研究方向为灌溉节水,(E-mail)1457503410@qq.com
基金资助:
LI Chi1(), CHEN Gang2(), YANG Jige2, YANG Tingrui1, ZHAO Jinghua1(), MA Mingjie1
Received:
2023-07-30
Published:
2024-10-20
Online:
2024-11-07
Correspondence author:
ZHAO Jinghua (1979-), male, from Qitai, Xinjiang, professor, doctoral supervisor, research direction: water conservation irrigation theory and efficient crop water use,(E-mail)105512275@qq.com;Supported by:
摘要:
【目的】 研究不同水氮处理对多光谱采集春玉米叶片信息的影响。【方法】 设置3个水平灌水定额(75%、100%、125% 作物需水量ETc)和4个水平的施氮量(0、200、400、600 kg/hm2)处理,采用地基多光谱拍摄的方法获取春玉米叶片的光谱信息,选取5个植被指数分析不同水氮处理对多光谱信息采集的影响。结合实测数据处理,分析相关性、粒子群优化的BP神经网络变化,研究实测值与植被指数的变化趋势。【结果】 植被指数NDVI在植株发育中期对SPAD值的反演效果较好,灌水量和施氮量均会影响植被指数对于SPAD值的反演。在中灌水处理(W2)条件下植被指数OSAVI与SAVI对表层土壤水分的反演较优,且OSAVI与0~20 cm土壤水分数据的PSO-BP神经网络建模优于SAVI对于10~30 cm土壤水分的PSO-BP神经网络建模。【结论】 在100%ETc灌水水平、施氮400 kg/hm2条件下,使用NDVI与SOAVI进行SPAD值和地表0~20 cm的土壤水分的反演较为准确。
中图分类号:
李池, 陈刚, 杨继革, 杨庭瑞, 赵经华, 马明杰. 基于地基多光谱的不同水氮处理条件下春玉米叶片信息采集[J]. 新疆农业科学, 2024, 61(10): 2374-2387.
LI Chi, CHEN Gang, YANG Jige, YANG Tingrui, ZHAO Jinghua, MA Mingjie. Stu dy on leaf information collection of spring maize under different water nitrogen treatment conditions based on ground-based multispectrum[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2374-2387.
土壤深度 Soil depth (cm) | pH值 pH value | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Nitrogen alkali digestion (mg/kg) | 速效磷 Fast-acting phosphorus (mg/kg) | 速效钾 Fast-acting potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|
0~20 | 8.30 | 17.880 | 0.830 | 0.890 | 18.022 | 62.916 | 11.810 | 140.200 |
20~40 | 7.88 | 17.283 | 0.787 | 0.879 | 18.000 | 60.123 | 7.540 | 135.200 |
表1 土壤酸碱度及微量元素含量
Tab.1 Soil pH and trace element content
土壤深度 Soil depth (cm) | pH值 pH value | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Nitrogen alkali digestion (mg/kg) | 速效磷 Fast-acting phosphorus (mg/kg) | 速效钾 Fast-acting potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|
0~20 | 8.30 | 17.880 | 0.830 | 0.890 | 18.022 | 62.916 | 11.810 | 140.200 |
20~40 | 7.88 | 17.283 | 0.787 | 0.879 | 18.000 | 60.123 | 7.540 | 135.200 |
处理名称 Treatments name | 灌水定额 Irrigation quota | 氮肥施用量 Nitrogen fertilizer application rate (kg/hm2) |
---|---|---|
W1N1 | 75% ETc | 0 |
W1N2 | 75% ETc | 200 |
W1N3 | 75% ETc | 400 |
W1N4 | 75% ETc | 600 |
W2N1 | 100% ETc | 0 |
W2N2 | 100% ETc | 200 |
W2N3 | 100% ETc | 400 |
W2N4 | 100% ETc | 600 |
W3N1 | 125% ETc | 0 |
W3N2 | 125% ETc | 200 |
W3N3 | 125% ETc | 400 |
W3N4 | 125% ETc | 600 |
表2 试验方案
Tab.2 Test programme
处理名称 Treatments name | 灌水定额 Irrigation quota | 氮肥施用量 Nitrogen fertilizer application rate (kg/hm2) |
---|---|---|
W1N1 | 75% ETc | 0 |
W1N2 | 75% ETc | 200 |
W1N3 | 75% ETc | 400 |
W1N4 | 75% ETc | 600 |
W2N1 | 100% ETc | 0 |
W2N2 | 100% ETc | 200 |
W2N3 | 100% ETc | 400 |
W2N4 | 100% ETc | 600 |
W3N1 | 125% ETc | 0 |
W3N2 | 125% ETc | 200 |
W3N3 | 125% ETc | 400 |
W3N4 | 125% ETc | 600 |
植被指数 Vegetation index | 全称 Full name | 计算公式 Calculation formula |
---|---|---|
NDVI | 归一化植被指数 | |
CCCI | 冠层叶绿素含量指数 | |
GRVI | 比值植被指数 | |
SAVI | 土壤调整植被指数 | |
OSAVI | 优化调节土壤植被指数 |
表3 植被指数计算
Tab.3 Vegetation index calculation method and provenance
植被指数 Vegetation index | 全称 Full name | 计算公式 Calculation formula |
---|---|---|
NDVI | 归一化植被指数 | |
CCCI | 冠层叶绿素含量指数 | |
GRVI | 比值植被指数 | |
SAVI | 土壤调整植被指数 | |
OSAVI | 优化调节土壤植被指数 |
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | 0.630* | 0.307 | 0.4 | 0.4 | 0.303 |
W2N1 | 0.646* | 0.194 | 0.309 | 0.321 | 0.331 |
W3N1 | 0.834* | 0.577* | 0.436 | 0.453 | 0.634* |
W1N2 | 0.910* | 0.433 | 0.173 | 0.181 | 0.898* |
W2N2 | 0.655* | 0.195 | 0.395 | 0.401 | 0.267 |
W3N2 | 0.566 | 0.605* | 0.534 | 0.548 | 0.681* |
W1N3 | 0.636* | 0.077 | 0.353 | 0.368 | 0.584* |
W2N3 | 0.516 | 0.22 | 0.416 | 0.439 | 0.257 |
W3N3 | 0.748* | 0.651* | 0.165 | 0.178 | 0.706* |
W1N4 | 0.591* | 0.357 | 0.192 | 0.2 | 0.342 |
W2N4 | 0.816** | 0.609* | 0.232 | 0.236 | 0.459 |
W3N4 | 0.169 | 0.154 | 0.343 | 0.34 | -0.069 |
表4 植被指数与SPAD值的相关关系
Tab.4 Correlation between vegetation index and SPAD values
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | 0.630* | 0.307 | 0.4 | 0.4 | 0.303 |
W2N1 | 0.646* | 0.194 | 0.309 | 0.321 | 0.331 |
W3N1 | 0.834* | 0.577* | 0.436 | 0.453 | 0.634* |
W1N2 | 0.910* | 0.433 | 0.173 | 0.181 | 0.898* |
W2N2 | 0.655* | 0.195 | 0.395 | 0.401 | 0.267 |
W3N2 | 0.566 | 0.605* | 0.534 | 0.548 | 0.681* |
W1N3 | 0.636* | 0.077 | 0.353 | 0.368 | 0.584* |
W2N3 | 0.516 | 0.22 | 0.416 | 0.439 | 0.257 |
W3N3 | 0.748* | 0.651* | 0.165 | 0.178 | 0.706* |
W1N4 | 0.591* | 0.357 | 0.192 | 0.2 | 0.342 |
W2N4 | 0.816** | 0.609* | 0.232 | 0.236 | 0.459 |
W3N4 | 0.169 | 0.154 | 0.343 | 0.34 | -0.069 |
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | 0.696 | 0.614 | -0.761* | -0.740* | 0.578 |
W2N1 | 0.029 | 0.214 | -0.790* | -0.795* | 0.076 |
W3N1 | -0.214 | -0.003 | -0.500 | -0.501 | -0.209 |
W1N2 | 0.016 | -0.391 | -0.868** | -0.880** | 0.227 |
W2N2 | -0.106 | -0.241 | -0.791 | -0.695 | -0.099 |
W3N2 | -0.201 | -0.017 | -0.752* | -0.764* | 0.007 |
W1N3 | 0.046 | 0.439 | -0.529 | -0.533 | 0.067 |
W2N3 | -0.059 | 0.134 | -0.746* | -0.763* | 0.136 |
W3N3 | -0.758* | -0.751 | -0.597 | -0.605 | -0.574 |
W1N4 | -0.399 | -0.403 | -0.677 | -0.667 | -0.479 |
W2N4 | 0.283 | -0.031 | -0.766* | -0.767* | 0.235 |
W3N4 | 0.108 | -0.704 | -0.806* | -0.815* | 0.085 |
表5 植被指数与0~20 cm土壤水分的相关关系
Tab.5 Correlation between vegetation index and soil moisture from 0 to 20 cm
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | 0.696 | 0.614 | -0.761* | -0.740* | 0.578 |
W2N1 | 0.029 | 0.214 | -0.790* | -0.795* | 0.076 |
W3N1 | -0.214 | -0.003 | -0.500 | -0.501 | -0.209 |
W1N2 | 0.016 | -0.391 | -0.868** | -0.880** | 0.227 |
W2N2 | -0.106 | -0.241 | -0.791 | -0.695 | -0.099 |
W3N2 | -0.201 | -0.017 | -0.752* | -0.764* | 0.007 |
W1N3 | 0.046 | 0.439 | -0.529 | -0.533 | 0.067 |
W2N3 | -0.059 | 0.134 | -0.746* | -0.763* | 0.136 |
W3N3 | -0.758* | -0.751 | -0.597 | -0.605 | -0.574 |
W1N4 | -0.399 | -0.403 | -0.677 | -0.667 | -0.479 |
W2N4 | 0.283 | -0.031 | -0.766* | -0.767* | 0.235 |
W3N4 | 0.108 | -0.704 | -0.806* | -0.815* | 0.085 |
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | -0.256 | -0.566 | 0.259 | 0.261 | -0.268 |
W2N1 | -0.129 | 0.141 | -0.689 | -0.695 | 0.058 |
W3N1 | -0.307 | -0.166 | -0.253 | -0.256 | -0.363 |
W1N2 | 0.137 | -0.105 | -0.789* | -0.782* | 0.196 |
W2N2 | 0.039 | 0.18 | -0.728 | -0.716* | -0.022 |
W3N2 | 0.164 | 0.177 | -0.857** | -0.861** | 0.122 |
W1N3 | -0.238 | -0.418 | -0.829* | -0.834* | -0.276 |
W2N3 | -0.145 | -0.13 | -0.901** | -0.910** | -0.158 |
W3N3 | 0.015 | -0.486 | -0.782 | -0.667 | -0.403 |
W1N4 | -0.026 | -0.179 | -0.834* | -0.829* | -0.221 |
W2N4 | -0.483 | -0.550 | -0.446 | -0.448 | -0.721 |
W3N4 | -0.354 | -0.950** | -0.44 | -0.462 | -0.472 |
表6 植被指数与10~30 cm土壤水分的相关关系
Tab.6 Correlation between vegetation index and soil moisture from 10 to 30 cm
处理名称 Treatments name | 归一化 植被指数 NDVI | 比值植 被指数 GRVI | 优化调节 土壤植被 指数 OSAVI | 土壤 调整植 被指数 SAVI | 冠层 叶绿素 含量指数 CCCI |
---|---|---|---|---|---|
W1N1 | -0.256 | -0.566 | 0.259 | 0.261 | -0.268 |
W2N1 | -0.129 | 0.141 | -0.689 | -0.695 | 0.058 |
W3N1 | -0.307 | -0.166 | -0.253 | -0.256 | -0.363 |
W1N2 | 0.137 | -0.105 | -0.789* | -0.782* | 0.196 |
W2N2 | 0.039 | 0.18 | -0.728 | -0.716* | -0.022 |
W3N2 | 0.164 | 0.177 | -0.857** | -0.861** | 0.122 |
W1N3 | -0.238 | -0.418 | -0.829* | -0.834* | -0.276 |
W2N3 | -0.145 | -0.13 | -0.901** | -0.910** | -0.158 |
W3N3 | 0.015 | -0.486 | -0.782 | -0.667 | -0.403 |
W1N4 | -0.026 | -0.179 | -0.834* | -0.829* | -0.221 |
W2N4 | -0.483 | -0.550 | -0.446 | -0.448 | -0.721 |
W3N4 | -0.354 | -0.950** | -0.44 | -0.462 | -0.472 |
图9 OSAVI-0~20 cm土壤水分BP神经网络与PSO-BP神经网络的预测对比
Fig.9 Comparison of the predictions of OSAVI-0-20 cm soil moisture BP neural network and PSO-BP neural network
图11 SAVI-10~30 cm土壤水分BP神经网络与PSO-BP神经网络的预测对比
Fig.11 Comparison of the predictions of SAVI-10~30 cm soil moisture BP neural network and PSO-BP neural network
[1] | 张园梦. 施氮量对膜下滴灌高产(15 000 kg/hm2)春玉米生长发育及产量效应研究[D]. 石河子: 石河子大学, 2020. |
ZHANG Yuanmeng. Effect of Nitrogen Application on Growth and Yield of Spring Maize with High Yield(15,000 Kg/hm2)under Drip Irrigation[D]. Shihezi: Shihezi University, 2020. | |
[2] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业:发展趋势与政策建议[J]. 农业经济问题, 2021, 42(7): 4-16. |
QIU Huanguang, LI Xinhai, YU Jialing. China maize industry: development trends and policy suggestions[J]. Issues in Agricultural Economy, 2021, 42(7): 4-16. | |
[3] |
李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941-1959.
DOI |
LI Shaokun, ZHAO Jiuran, DONG Shuting, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959.
DOI |
|
[4] |
许海涛, 冯晓曦, 许波, 等. 氮水协同对玉米干物质和氮素累积与氮素运移及利用效率的影响[J]. 新疆农业科学, 2022, 59(12): 2957-2968.
DOI |
XU Haitao, FENG Xiaoxi, XU Bo, et al. Effects of nitrogen and water collaborative supply on accumulation and distribution of dry matter and nitrogen, nitrogen transport and use efficiency of corn[J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2957-2968.
DOI |
|
[5] | 孟庆岩, 顾行发, 余涛, 等. 我国民用卫星遥感应用现状、问题与趋势[C]// 中国地震学会空间对地观测专业委员会.中国地震学会空间对地观测专业委员会成立大会暨学术研讨会论文集. 地震杂志社(Earthquake Magazine Press), 2008:8. |
MENG Qingyan, GU Xingfa, YU Tao, et al. Current Situation, Problems and Trends of Remote Sensing Applications of Civilian Satellites in China[C]// The Committee on Space-to-Earth Observation of the Chinese Seismological Society. Proceedings of the Inaugural Meeting and Symposium of the Space-to-Earth Observation Committee of the Chinese Seismological Society. Earthquake Magazine Press, 2008:8. | |
[6] | 马仪, 黄组桂, 贾江栋, 等. 基于无人机-卫星遥感升尺度的土壤水分监测模型研究[J/OL]. 农业机械学报:1-24 [2023-04-22]. |
MA Yi, HUANG Zugui, JIA Jiangdong, et al. Soil moisture monitoring model based on UAV-Satellite remote sensing scale-up[J/OL]. Transactions of the Chinese Society for Agricultural Machinery:1-24 [2023-04-22]. | |
[7] | 郑超磊, 贾立, 胡光成. 高分一号卫星遥感数据驱动ETMonitor模型估算16 m分辨率蒸散发及验证[J]. 遥感学报, 2023, 27(3): 758-768. |
ZHENG Chaolei, JIA Li, HU Guangcheng. Evapotranspiration estimation and validation at 16 m resolution based on ETMonitor model driven by GF-1 satellite remote sensing datasets[J]. National Remote Sensing Bulletin, 2023, 27(3): 758-768. | |
[8] | 闫成川, 曲延英, 陈全家, 等. 基于无人机多光谱影像的棉花SPAD值及叶片含水量估测[J]. 农业工程学报, 2023, 39(2): 61-67. |
YAN Chengchuan, QU Yanying, CHEN Quanjia, et al. Estimation of cotton SPAD value and leaf water content based on UAV multispectral images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 61-67. | |
[9] | 李诗瑶, 丛士翔, 王融融, 等. 基于无人机多光谱遥感的干旱胁迫下玉米冠层SPAD值监测[J/OL]. 干旱区地理:1-14 [2023-04-22]. |
LI Shiyao, CONG Shixiang, WANG Rongrong, et al. Monitoring of maize canopy SPAD value under drought stress based on UAV multi-spectral remote sensing.[J/OL]. Arid Land Geography:1-14 [2023-04-22]. | |
[10] | Chen L, Gao J, Chang M, et al. Effects of Spatial Density of Farmland Shelterbelts on NDVI on the Northern Slope of Tianshan Mountains[J]. Asian Agricultural Research, 2022, 14(10):4. |
[11] | 冯文斌. 基于无人机多光谱遥感的夏玉米长势监测及产量估测[D]. 泰安: 山东农业大学, 2022. |
FENG Wenbin. Summer corn growth monitoring and yield estimation by UAV-based Multispectral remote sensing[D]. Tai'an: Shandong Agricultural University, 2022. | |
[12] | Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298. |
[13] | 许民, 宜树华, 叶柏生, 等. 植被盖度及太阳/观测角度对疏勒河上游NDVI和SAVI值的影响[J]. 干旱区资源与环境, 2012, 26(5): 101-107. |
XU Min, YI Shuhua, YE Baisheng, et al. Influence of PVC and Sun/view geometry on NDVI and SAVI in the upstream regions of Shule River Basin[J]. Journal of Arid Land Resources and Environment, 2012, 26(5): 101-107. | |
[14] | 杨祯婷. 基于无人机多光谱遥感的夏玉米长势监测研究[D]. 杨凌: 西北农林科技大学, 2022. |
YANG Zhenting. Study on Monitoring of Summer Maize Growth Based on Multi-spectral Remote Sensing of UAV[D]. Yangling: Northwest A & F University, 2022. | |
[15] | 林位衡, 黄文骞, 李广会, 等. 基于粒子群优化神经网络的水深反演模型[J]. 海洋测绘, 2020, 40(5): 26-29. |
LIN Weiheng, HUANG Wenqian, LI Guanghui, et al. A model for water depth retrieval based on neural network optimized by particle swarm optimization[J]. Hydrographic Surveying and Charting, 2020, 40(5): 26-29. | |
[16] | 崔乃丹. 基于粒子群优化算法与BP神经网络的高铁客运量预测算法[J]. 自动化技术与应用, 2022, 41(4): 148-150. |
CUI Naidan. High speed railway passenger volume prediction algorithm based on particle swarm optimization algorithm and BP neural network[J]. Techniques of Automation and Applications, 2022, 41(4): 148-150. | |
[17] | 祝子涵, 谭峰, 田芳明, 等. 基于BP神经网络的粳稻种子拉曼光谱鉴别方法研究[J/OL]. 中国粮油学报:1-12 [2023-03-10]. |
ZHU Zihan, TAN Feng, TIAN Fangming, et al. Research on the raman spectroscopic identification of japonica rice seeds based on BP Neural Network[J/OL]. Journal of the Chinese Cereals and Oils Association:1-12 [2023-03-10]. | |
[18] | 杨晓慧, 王碧胜, 孙筱璐, 等. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J/OL]. 作物学报:1-15 [2023-04-22]. |
YANG Xiaohui, WANG Bisheng, SUN Xiaolu, et al. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule[J/OL]. Acta Agronomica Sinica:1-15 [2023-04-22]. | |
[19] | Zhang J, Liu F L, Wang Q H, et al. Effect of light wavelength on biomass, growth, photosynthesis and pigment content of Emiliania huxleyi (Isochrysidales, Cocco-lithophyceae)[J]. Journal of Marine Science and Engineering, 2023, 11(2): 456. |
[20] | 张智韬, 劳聪聪, 王海峰, 等. 基于FOD和SVMDA-RF的土壤有机质含量高光谱预测[J]. 农业机械学报, 2020, 51(1): 156-167. |
ZHANG Zhitao, LAO Congcong, WANG Haifeng, et al. Estimation of desert soil organic matter through hyperspectra based on fractional-order derivatives and SVMDA-RF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 156-167. | |
[21] | Roig-Oliver M, Fullana-Pericàs M, Bota J, et al. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress[J]. Plant Science: an International Journal of Experimental Plant Biology, 2021, 311: 111015. |
[22] | Pang Y, Huang Y, Zhou Y, et al. Identifying spectral features of characteristics of Sphagnum to assess the remote sensing potential of peatlands: A case study in China[J]. MIRES and PEAT, 2020,26. |
[23] | 汪沛, 陈海波, 李就好. 控制灌溉下甘蔗叶水势、叶片光谱反射率和土壤含水量的关系[C]// 中国农业工程学会农业水土工程专业委员会,云南农业大学水利水电与建筑学院.现代节水高效农业与生态灌区建设(上). 云南大学出版社(Yunnan University Press), 2010:9. |
WANG Pei, CHEN Haibo, LI Jiuhao. The relationship Among sugarcane leaf water potential, leaf spectral reflectance and soil moisture under controlled irrigation[C]// China Agricultural Engineering Society, College of Water Conservancy, Hydropower and Construction, Yunnan Agricultural University. Modern water-saving and efficient agriculture and ecological irrigation district construction (above). Yunnan University Press, 2010:9. | |
[24] | Zhou G F, Moayedi H, Bahiraei M, et al. Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings[J]. Journal of Cleaner Production, 2020, 254: 120082. |
[25] | 贺露, 万莉, 高会议. 基于高光谱成像技术识别番茄干旱胁迫[J]. 光谱学与光谱分析, 2023, 43(3): 724-730. |
HE Lu, WAN Li, GAO Huiyi. Recognition of drought stress in tomato based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 724-730. | |
[26] |
祝榛, 李天胜, 崔静, 等. 基于高光谱成像估测冬小麦不同生育时期水分状况[J]. 新疆农业科学, 2022, 59(3): 521-532.
DOI |
ZHU Zhen, LI Tiansheng, CUI Jing, et al. Study on estimation of water status of winter wheat in different growth stages based on hyperspectral imaging[J]. Xinjiang Agricultural Sciences, 2022, 59(3): 521-532.
DOI |
|
[27] | 李庆禄. 渍水胁迫下小麦高光谱特征分析与主要生理参数估测研究[D]. 扬州: 扬州大学, 2021. |
LI Qinglu. Hyperspectral characteristics analysis and estimation of main physiological parameters of wheat under waterlogging stress[D]. Yangzhou: Yangzhou University, 2021. | |
[28] |
韩康, 于静, 石晓华, 等. 不同光谱指数反演马铃薯叶片氮累积量的研究[J]. 作物学报, 2020, 46(12): 1979-1990.
DOI |
HAN Kang, YU Jing, SHI Xiaohua, et al. Inversion of nitrogen accumulation in potato leaf with different spectral indices[J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
DOI |
|
[29] | 努热曼古丽·托乎提, 聂臣巍, 余汛, 等. 基于高光谱指数的叶片尺度叶绿素荧光参数反演[J]. 玉米科学, 2021, 29(5): 73-80. |
Nuerman Tuohuti, NIE Chenwei, YU Xun, et al. Retrieval of leaf-scale chlorophyll fluorescence parameters based on hyperspectral index[J]. Journal of Maize Sciences, 2021, 29(5): 73-80. | |
[30] | 王俞茜. 华北地区夏玉米水分和氮素光谱诊断模型研究[D]. 天津: 天津农学院, 2021. |
WANG Yuqian. Study on Spectral Diagnostic Model of Water and Nitrogen of Summer Maize in North China[D]. Tianjin: Tianjin Agricultural University, 2021. | |
[31] | 李雪, 顾沈明, 年浩. 改进粒子群算法优化BP神经网络的粮食产量预测[J]. 漳州师范学院学报(自然科学版), 2014, 27(1): 56-61. |
LI Xue, GU Shenming, NIAN Hao. Prediction for grain yield based on improved PSO optimized BP neural network[J]. Journal of Minnan Normal University (Natural Science), 2014, 27(1): 56-61. |
[1] | 张振飞, 郭靖, 颜安, 侯正清, 袁以琳, 肖淑婷, 孙哲. 多光谱无人机不同飞行高度下苹果树高的提取[J]. 新疆农业科学, 2024, 61(7): 1710-1716. |
[2] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[3] | 张振飞, 郭靖, 颜安, 袁以琳, 肖淑婷, 侯正清, 孙哲. 基于多光谱无人机不同飞行高度下苹果树冠幅信息的提取[J]. 新疆农业科学, 2024, 61(6): 1468-1476. |
[4] | 孙萌, 颜安, 李靖言, 卢前成, 范君, 孙哲, 袁以琳. 不同水氮处理对紫花苜蓿生长发育、品质及水肥利用效率的影响[J]. 新疆农业科学, 2024, 61(6): 1512-1526. |
[5] | 谢忠, 叶含春, 王振华, 李海强, 刘健, 陈睿, 许宇双. 浅埋滴灌水氮配施对冬小麦生长发育、产量及水分利用效率的影响[J]. 新疆农业科学, 2024, 61(5): 1057-1066. |
[6] | 侯献飞, 宋贤明, 李强, 顾元国, 苗昊翠, 曾幼玲, 郭美丽, 贾东海. 水氮耦合对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 791-803. |
[7] | 朱韬, 雷庆元, 马亮. 不同水氮用量对复播玉米生长发育、产量及利用效率的影响和选优模型验证[J]. 新疆农业科学, 2024, 61(4): 835-844. |
[8] | 马新超, 轩正英, 闵昊哲, 齐志文, 成宏宇, 谭占明, 王旭峰. 水氮耦合对沙培黄瓜光合日变化及叶绿素荧光参数的影响[J]. 新疆农业科学, 2023, 60(8): 1966-1974. |
[9] | 江柱, 张江辉, 白云岗, 杨鹏年, 刘洪波, 肖军, 刘旭辉. 膜下咸水滴灌水肥盐调控对棉花生长及产量的影响[J]. 新疆农业科学, 2023, 60(6): 1389-1397. |
[10] | 方杰, 张杰, 马娟, 田翔, 于秀针, 冯斌. 基于神经网络PID算法的优化饲料配制系统[J]. 新疆农业科学, 2023, 60(4): 1003-1010. |
[11] | 潘洋, 付秋萍, 海英, 祁通, 洪明, 马英杰, 潘俊杰. 新疆滴灌机采棉生长及产量的最佳水氮组合[J]. 新疆农业科学, 2023, 60(11): 2674-2686. |
[12] | 蒲胜海, 王则玉, 丁峰, 牛新湘, 金秀勤, 马红红, 马兴旺, 李磐, 彭银双, 刘小利, 涂永峰, 赵冬梅, 李小伟, 李韵同. 膜下滴灌水氮空间调控对机采棉群体塑造及产量的影响[J]. 新疆农业科学, 2022, 59(8): 1838-1846. |
[13] | 徐彦军, 廉苇佳, 刘翔宇, 斯拉依丁·司马义, 唐秋菊, 艾尼瓦尔·阿不都拉. 水氮耦合对棉田土壤水分时空分布及产量效应的影响[J]. 新疆农业科学, 2022, 59(5): 1051-1059. |
[14] | 韩坤林, 王钊英, 杨会民, 陈毅飞, 蒋永新, 张佳喜. 基于PCA-BPNN的温室番茄果实直径预测模型[J]. 新疆农业科学, 2022, 59(2): 485-492. |
[15] | 武敏桦, 武佳颖, 俞新华, 张凯旋, 卢海博, 赵海超, 刘子刚, 黄智鸿. 玉黄金对春玉米茎秆显微结构及抗折强度的影响[J]. 新疆农业科学, 2022, 59(10): 2402-2410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||