新疆农业科学 ›› 2024, Vol. 61 ›› Issue (10): 2388-2395.DOI: 10.6048/j.issn.1001-4330.2024.10.006
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
邵疆1(), 赵云2, 胡相伟2, 刘杰1, 纳斯如拉·克热木3, 石书兵1(), 冯国郡1()
收稿日期:
2024-04-16
出版日期:
2024-10-20
发布日期:
2024-11-07
通信作者:
石书兵(1966-),男,山东商河人,教授,硕士生/博士生导师,研究方向为小麦高产栽培,(E-mail)ssb@xjau.edu.cn;作者简介:
邵疆(2000-),男,新疆伊犁人,硕士研究生,研究方向为作物学,(E-mail)1548713605@qq.com
基金资助:
SHAO Jiang1(), ZHAO Yun2, HU Xiangwei2, LIU Jie1, Nasirula Keremu3, SHI Shubing1(), FENG Guojun1()
Received:
2024-04-16
Published:
2024-10-20
Online:
2024-11-07
Correspondence author:
SHI Shubing (1966-), male, from Shanghe, Shandong, professor, master's/doctoral supervisor, research direction: high-yield wheat cultivation, (E-mail)ssb@xjau.edu.cn;Supported by:
摘要:
【目的】 研究干旱胁迫下谷子不同生长时期生长发育及干物质积累间的关系,阐明干旱胁迫对谷子生长发育及产量的影响。【方法】 以新引3个粮用谷子品种为材料,通过人工控制水分灌溉量,于谷子不同生育时期进行旱胁迫处理,探究不同时期旱胁迫谷子生长发育及产量性状的变化规律。【结果】 (1)抽穗期干旱胁迫对谷子农艺性状的影响显著,其中济07607株高下降10.2%,嫩选10号株高和穗长分别下降了10.9%和16.0%,保谷22穗长和茎基粗分别下降了22.8%和14.6%。(2)抽穗期干旱胁迫对谷子SPAD值、叶面积和干物质积累影响显著。(3)抽穗期干旱对植株生长发育及产量的影响显著,产量分别较对照降低19.6%、37.5%和18.4%。灌水量与地上部干质量、生物量和产量在0.001水平显著正相关。(4)不同粮用谷子品种的抗旱性表现为保谷22>济07607>嫩选10号。【结论】 抽穗期是谷子干旱胁迫敏感时期,栽培中应保证抽穗期谷子充足的土壤水分,以保证谷子产量的增加。
中图分类号:
邵疆, 赵云, 胡相伟, 刘杰, 纳斯如拉·克热木, 石书兵, 冯国郡. 不同时期干旱胁迫对谷子产量及干物质积累的影响[J]. 新疆农业科学, 2024, 61(10): 2388-2395.
SHAO Jiang, ZHAO Yun, HU Xiangwei, LIU Jie, Nasirula Keremu, SHI Shubing, FENG Guojun. Effects of drought stress on foxtail millet yield and dry matter accumulation in different periods[J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2388-2395.
年份 Year | 品种 Varieties | 处理 Treatments | 农艺性状Agronomic traits | ||||
---|---|---|---|---|---|---|---|
株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 茎基粗 The stem base is thick | 主茎节数 Number of nodes in the main stem | |||
2022 | 济07607 | CK | 169.70a | 25.80a | 30.26b | 8.26b | 14.50a |
Q1 | 137.60c | 26.50a | 27.59b | 11.07a | 11.90b | ||
Q2 | 152.40b | 27.35a | 33.76a | 10.09a | 11.80b | ||
嫩选10号 | CK | 160.10a | 23.30a | 24.95a | 6.74a | 12.30a | |
Q1 | 147.50b | 23.50a | 22.63a | 7.91a | 9.00b | ||
Q2 | 158.70a | 24.85a | 25.12a | 8.16a | 9.90b | ||
保谷22 | CK | 145.00a | 24.50a | 26.02a | 7.902b | 14.00a | |
Q1 | 122.90b | 25.00a | 27.67a | 9.35a | 9.40c | ||
Q2 | 121.40b | 24.65a | 26.48a | 8.88ab | 11.80b | ||
2023 | 济07607 | CK | 146.44a | 21.76a | 24.54b | 8.49a | 12.50a |
Q1 | 145.70a | 24.48a | 24.29b | 8.94a | 13.80a | ||
Q2 | 145.00a | 23.08a | 33.63a | 7.83a | 12.60a | ||
嫩选10号 | CK | 149.71a | 23.90a | 18.93b | 5.37b | 9.90b | |
Q1 | 141.20b | 22.65ab | 19.24b | 6.73a | 11.00a | ||
Q2 | 133.40b | 20.07b | 22.72a | 5.46b | 9.40b | ||
保谷22 | CK | 131.80ab | 22.41a | 23.66a | 9.20a | 12.00b | |
Q1 | 135.30a | 21.95a | 22.71a | 8.01ab | 13.60a | ||
Q2 | 121.40b | 17.31b | 24.59a | 7.86b | 12.30b |
表1 不同时期干旱胁迫下谷子农艺性状的变化
Tab.1 Changes of drought stress on agronomic traits of millet at different periods
年份 Year | 品种 Varieties | 处理 Treatments | 农艺性状Agronomic traits | ||||
---|---|---|---|---|---|---|---|
株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 茎基粗 The stem base is thick | 主茎节数 Number of nodes in the main stem | |||
2022 | 济07607 | CK | 169.70a | 25.80a | 30.26b | 8.26b | 14.50a |
Q1 | 137.60c | 26.50a | 27.59b | 11.07a | 11.90b | ||
Q2 | 152.40b | 27.35a | 33.76a | 10.09a | 11.80b | ||
嫩选10号 | CK | 160.10a | 23.30a | 24.95a | 6.74a | 12.30a | |
Q1 | 147.50b | 23.50a | 22.63a | 7.91a | 9.00b | ||
Q2 | 158.70a | 24.85a | 25.12a | 8.16a | 9.90b | ||
保谷22 | CK | 145.00a | 24.50a | 26.02a | 7.902b | 14.00a | |
Q1 | 122.90b | 25.00a | 27.67a | 9.35a | 9.40c | ||
Q2 | 121.40b | 24.65a | 26.48a | 8.88ab | 11.80b | ||
2023 | 济07607 | CK | 146.44a | 21.76a | 24.54b | 8.49a | 12.50a |
Q1 | 145.70a | 24.48a | 24.29b | 8.94a | 13.80a | ||
Q2 | 145.00a | 23.08a | 33.63a | 7.83a | 12.60a | ||
嫩选10号 | CK | 149.71a | 23.90a | 18.93b | 5.37b | 9.90b | |
Q1 | 141.20b | 22.65ab | 19.24b | 6.73a | 11.00a | ||
Q2 | 133.40b | 20.07b | 22.72a | 5.46b | 9.40b | ||
保谷22 | CK | 131.80ab | 22.41a | 23.66a | 9.20a | 12.00b | |
Q1 | 135.30a | 21.95a | 22.71a | 8.01ab | 13.60a | ||
Q2 | 121.40b | 17.31b | 24.59a | 7.86b | 12.30b |
年份 Year | 品种 Varieties | 处理 Treat- ments | 部位Place | ||
---|---|---|---|---|---|
叶 leaf | 茎 stem | 穗 spike | |||
2022 | 济07607 | CK | 54.05a | 59.25ab | 57.85b |
Q1 | 46.35b | 62.75a | 62.50a | ||
Q2 | 44.95b | 34.60b | 56.15b | ||
嫩选10号 | CK | 62.15a | 84.00a | 76.30a | |
Q1 | 52.9a0b | 86.45a | 71.40a | ||
Q2 | 49.45b | 66.00b | 60.00b | ||
保谷22 | CK | 61.60a | 70.00a | 118.55a | |
Q1 | 57.90a | 62.15ab | 106.75a | ||
Q2 | 43.25b | 46.70b | 75.05b | ||
2023 | 济07607 | CK | 54.80a | 70.20a | 109.70a |
Q1 | 44.45b | 51.75b | 51.75b | ||
Q2 | 55.85a | 53.85b | 43.1b | ||
嫩选10号 | CK | 28.35a | 35.25a | 43.85b | |
Q1 | 32.25a | 38.75a | 61.45a | ||
Q2 | 29.759a | 34.4a | 42.45b | ||
保谷22 | CK | 42.75ab | 65.9b | 84.45a | |
Q1 | 48.9a | 78.8a | 74.6b | ||
Q2 | 38.55b | 47.85c | 73.9b |
表2 不同时期干旱胁迫下谷子干物质积累的变化
Tab.2 Changes of drought stress on dry matter accumulation in millet at different periods
年份 Year | 品种 Varieties | 处理 Treat- ments | 部位Place | ||
---|---|---|---|---|---|
叶 leaf | 茎 stem | 穗 spike | |||
2022 | 济07607 | CK | 54.05a | 59.25ab | 57.85b |
Q1 | 46.35b | 62.75a | 62.50a | ||
Q2 | 44.95b | 34.60b | 56.15b | ||
嫩选10号 | CK | 62.15a | 84.00a | 76.30a | |
Q1 | 52.9a0b | 86.45a | 71.40a | ||
Q2 | 49.45b | 66.00b | 60.00b | ||
保谷22 | CK | 61.60a | 70.00a | 118.55a | |
Q1 | 57.90a | 62.15ab | 106.75a | ||
Q2 | 43.25b | 46.70b | 75.05b | ||
2023 | 济07607 | CK | 54.80a | 70.20a | 109.70a |
Q1 | 44.45b | 51.75b | 51.75b | ||
Q2 | 55.85a | 53.85b | 43.1b | ||
嫩选10号 | CK | 28.35a | 35.25a | 43.85b | |
Q1 | 32.25a | 38.75a | 61.45a | ||
Q2 | 29.759a | 34.4a | 42.45b | ||
保谷22 | CK | 42.75ab | 65.9b | 84.45a | |
Q1 | 48.9a | 78.8a | 74.6b | ||
Q2 | 38.55b | 47.85c | 73.9b |
图1 不同时期干旱胁迫下谷子SPAD值的变化 注:不同小写字母表示不同处理在P<0.05水平上差异显著,下同
Fig.1 Changes of drought stress on SPAD value of millet at different stages Note:Different lowercase letters in the figure indicate significant differences at the P<0.05 level between different treatments,the same as below
年份 Year | 品种 Varieties | 处理 Treatments | 单穗粒重 Grain weight per spike(kg) | 单穗重 Single spike weight(kg) | 千粒重 1000-grain weight(g) | 出谷率 Valley rate (%) |
---|---|---|---|---|---|---|
2022 | 济07607 | CK | 0.18a | 0.22ab | 3.05a | 77.05a |
Q1 | 0.16ab | 0.19b | 2.98a | 76.65a | ||
Q2 | 0.14b | 0.24a | 2.46b | 79.47a | ||
嫩选10号 | CK | 0.11a | 0.13a | 2.81a | 83.35a | |
Q1 | 0.10a | 0.11a | 2.97a | 77.98a | ||
Q2 | 0.08a | 0.12a | 2.89a | 79.08a | ||
保谷22 | CK | 0.15a | 0.19a | 2.94a | 78.00b | |
Q1 | 0.13a | 0.14b | 2.62b | 78.52b | ||
Q2 | 0.12a | 0.14b | 2.77ab | 81.10a | ||
2023 | 济07607 | CK | 0.20a | 0.43a | 3.11a | 78.11a |
Q1 | 0.15a | 0.18c | 3.29a | 75.47a | ||
Q2 | 0.14a | 0.27b | 3.12a | 81.82a | ||
嫩选10号 | CK | 0.11a | 0.13a | 3.72a | 78.7a | |
Q1 | 0.10a | 0.11a | 3.52ab | 75.01a | ||
Q2 | 0.09a | 0.10a | 3.35b | 77.03a | ||
保谷22 | CK | 0.13a | 0.17a | 2.10c | 72.85a | |
Q1 | 0.10a | 0.09a | 2.78a | 80.04a | ||
Q2 | 0.09a | 0.13a | 2.47b | 73.67a |
表3 不同时期干旱胁迫下谷子产量形成的变化
Tab.3 Changes of drought stress on millet yield formation at different stages
年份 Year | 品种 Varieties | 处理 Treatments | 单穗粒重 Grain weight per spike(kg) | 单穗重 Single spike weight(kg) | 千粒重 1000-grain weight(g) | 出谷率 Valley rate (%) |
---|---|---|---|---|---|---|
2022 | 济07607 | CK | 0.18a | 0.22ab | 3.05a | 77.05a |
Q1 | 0.16ab | 0.19b | 2.98a | 76.65a | ||
Q2 | 0.14b | 0.24a | 2.46b | 79.47a | ||
嫩选10号 | CK | 0.11a | 0.13a | 2.81a | 83.35a | |
Q1 | 0.10a | 0.11a | 2.97a | 77.98a | ||
Q2 | 0.08a | 0.12a | 2.89a | 79.08a | ||
保谷22 | CK | 0.15a | 0.19a | 2.94a | 78.00b | |
Q1 | 0.13a | 0.14b | 2.62b | 78.52b | ||
Q2 | 0.12a | 0.14b | 2.77ab | 81.10a | ||
2023 | 济07607 | CK | 0.20a | 0.43a | 3.11a | 78.11a |
Q1 | 0.15a | 0.18c | 3.29a | 75.47a | ||
Q2 | 0.14a | 0.27b | 3.12a | 81.82a | ||
嫩选10号 | CK | 0.11a | 0.13a | 3.72a | 78.7a | |
Q1 | 0.10a | 0.11a | 3.52ab | 75.01a | ||
Q2 | 0.09a | 0.10a | 3.35b | 77.03a | ||
保谷22 | CK | 0.13a | 0.17a | 2.10c | 72.85a | |
Q1 | 0.10a | 0.09a | 2.78a | 80.04a | ||
Q2 | 0.09a | 0.13a | 2.47b | 73.67a |
年份 Year | 项目 Items | 株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 干物质 Dry matter | SPAD值 SPAD value | 叶面积 Leaf area | 单穗粒重 Grain weight per spike | 单穗重 Single spike weight | 千粒重 1000- grain weight |
---|---|---|---|---|---|---|---|---|---|---|
2022 | 穗长 | 0.756** | 1 | |||||||
穗粗 | 0.570** | 0.495** | 1 | |||||||
干物质 | 0.345 | 0.362* | 0.338 | 1 | ||||||
SPAD值 | 0.565** | 0.501** | 0.192 | 0.117 | 1 | |||||
叶面积 | 0.291 | 0.184 | 0.167 | 0.184 | 0.227 | 1 | ||||
单穗粒重 | 0.334 | 0.338 | 0.424* | 0.426* | 0.129 | 0.309 | 1 | |||
单穗重 | 0.391* | 0.437* | 0.527** | 0.370* | 0.235 | 0.269 | 0.896** | 1 | ||
千粒重 | 0.482** | 0.735** | 0.119 | -0.032 | 0.521** | 0.183 | 0.143 | 0.207 | 1 | |
产量 | 0.21 | -0.057 | 0.236 | 0.103 | -0.302 | -0.014 | 0.118 | -0.011 | -0.292 | |
2023 | 穗长 | 0.505** | 1 | |||||||
穗粗 | -0.083 | 0.288** | 1 | |||||||
干物质 | -0.278 | -0.129 | 0.06 | 1 | ||||||
SPAD值 | 0.033 | 0.014 | -0.018 | -0.052 | 1 | |||||
叶面积 | 0.059 | -0.074 | 0.342** | 0.028 | 0.055 | 1 | ||||
单穗粒重 | -0.4 | -0.163 | 0.191 | 0.174 | -0.092 | -0.155 | 1 | |||
单穗重 | -0.252 | -0.116 | 0.185 | 0.113 | -0.058 | -0.039 | 0.952** | 1 | ||
千粒重 | 0.089 | 0.139 | 0.625** | 0.15 | 0.193 | 0.226 | 0.076 | 0.142 | 1 | |
产量 | 0.146 | -0.464 | 0.038 | 0.559* | -0.041 | 0.392 | -0.02 | -0.11 | 0.451 |
表4 不同时期干旱胁迫下3个品种谷子的相关性变化
Tab.4 Changes of correlation analysis of three varieties of millet under drought stress at different periods
年份 Year | 项目 Items | 株高 Plant height | 穗长 Spike length | 穗粗 Spike thickness | 干物质 Dry matter | SPAD值 SPAD value | 叶面积 Leaf area | 单穗粒重 Grain weight per spike | 单穗重 Single spike weight | 千粒重 1000- grain weight |
---|---|---|---|---|---|---|---|---|---|---|
2022 | 穗长 | 0.756** | 1 | |||||||
穗粗 | 0.570** | 0.495** | 1 | |||||||
干物质 | 0.345 | 0.362* | 0.338 | 1 | ||||||
SPAD值 | 0.565** | 0.501** | 0.192 | 0.117 | 1 | |||||
叶面积 | 0.291 | 0.184 | 0.167 | 0.184 | 0.227 | 1 | ||||
单穗粒重 | 0.334 | 0.338 | 0.424* | 0.426* | 0.129 | 0.309 | 1 | |||
单穗重 | 0.391* | 0.437* | 0.527** | 0.370* | 0.235 | 0.269 | 0.896** | 1 | ||
千粒重 | 0.482** | 0.735** | 0.119 | -0.032 | 0.521** | 0.183 | 0.143 | 0.207 | 1 | |
产量 | 0.21 | -0.057 | 0.236 | 0.103 | -0.302 | -0.014 | 0.118 | -0.011 | -0.292 | |
2023 | 穗长 | 0.505** | 1 | |||||||
穗粗 | -0.083 | 0.288** | 1 | |||||||
干物质 | -0.278 | -0.129 | 0.06 | 1 | ||||||
SPAD值 | 0.033 | 0.014 | -0.018 | -0.052 | 1 | |||||
叶面积 | 0.059 | -0.074 | 0.342** | 0.028 | 0.055 | 1 | ||||
单穗粒重 | -0.4 | -0.163 | 0.191 | 0.174 | -0.092 | -0.155 | 1 | |||
单穗重 | -0.252 | -0.116 | 0.185 | 0.113 | -0.058 | -0.039 | 0.952** | 1 | ||
千粒重 | 0.089 | 0.139 | 0.625** | 0.15 | 0.193 | 0.226 | 0.076 | 0.142 | 1 | |
产量 | 0.146 | -0.464 | 0.038 | 0.559* | -0.041 | 0.392 | -0.02 | -0.11 | 0.451 |
[12] | 王振华, 刘鑫, 余爱丽, 等. 谷子苗期干旱胁迫对各器官干物质积累及产量的影响[J]. 贵州农业科学, 2019, 47(2): 8-12. |
WANG Zhenhua, LIU Xin, YU Aili, et al. Effects of drought stress on dry matter accumulation in various organs and yield of millet at seedling stage[J]. Guizhou Agricultural Sciences, 2019, 47(2): 8-12. | |
[13] | 董钻, 沈秀瑛. 作物栽培学总论[M]. 北京: 中国农业出版社, 2000. |
DONG Zuan, SHEN Xiuying. Introduction to crop production[M]. Beijing: China Agriculture Press, 2000. | |
[14] | 许海霞, 李伟, 程西永, 等. 干旱胁迫对小麦农艺性状的影响[J]. 中国农学通报, 2008, 24(3): 125-129. |
XU Haixia, LI Wei, CHENG Xiyong, et al. Drought stress effect on agronomic traits of wheat[J]. Chinese Agricultural Science Bulletin, 2008, 24(3): 125-129. | |
[15] | 张文英, 智慧, 柳斌辉, 等. 干旱胁迫对谷子孕穗期光合特性的影响[J]. 河北农业科学, 2011, 15(6): 7-11. |
ZHANG Wenying, ZHI Hui, LIU Binhui, et al. Effects of drought stress on millet photosynthetic characteristics in booting stage[J]. Journal of Hebei Agricultural Sciences, 2011, 15(6): 7-11. | |
[16] | 屈洋, 宋慧, 刘洋, 等. 谷子新品种(系)主要农艺性状及茎杆特性的遗传多样性分析[J]. 干旱地区农业研究, 2018, 36(3): 51-58. |
QU Yang, SONG Hui, LIU Yang, et al. Genetic diversity of agronomic traits and node characters in foxtail millet(Setaria italic Beauv.)[J]. Agricultural Research in the Arid Areas, 2018, 36(3): 51-58. | |
[17] | 朱明哲, 杨蕊, 段红. 小麦新品种产量性状及主要品质性状的因子分析与聚类分析[J]. 河南科技学院学报(自然科学版), 2012, 40(1): 1-6. |
ZHU Mingzhe, YANG Rui, DUAN Hong. Yield characters of new wheat varieties and factor and cluster analysis of their main characters[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2012, 40(1): 1-6. | |
[18] | 钱建南, 丁颖, 李玉杨, 等. 14个水稻品种产量与农艺性状的灰色关联度分析[J]. 大麦与谷类科学, 2022, 39(5): 37-41. |
QIAN Jiannan, DING Ying, LI Yuyang, et al. Grey correlation analysis of the yield and agronomic characters of 14 rice varieties[J]. Barley and Cereal Sciences, 2022, 39(5):37-41. | |
[19] |
贾小平, 董普辉, 张红晓, 等. 谷子抗倒伏性和株高、穗部性状的相关性研究[J]. 植物遗传资源学报, 2015, 16(6): 1188-1193.
DOI |
JIA Xiaoping, DONG Puhui, ZHANG Hongxiao, et al. Correlation study of lodging resistance and plant height, panicle traits in foxtail millet[J]. Journal of Plant Genetic Resources, 2015, 16(6): 1188-1193. | |
[20] | 白玉婷, 李强, 高志军, 等. 春播夏谷子品系农艺性状的相关性和聚类分析[J]. 分子植物育种, 2020, 18(7): 2338-2351. |
BAI Yuting, LI Qiang, GAO Zhijun, et al. Correlation and cluster analysis of agronomic characters in summer foxtail millet lines cultivated in spring[J]. Molecular Plant Breeding, 2020, 18(7): 2338-2351. | |
[21] | 孟庆立, 关周博, 冯佰利, 等. 谷子抗旱相关性状的主成分与模糊聚类分析[J]. 中国农业科学, 2009, 42(8): 2667-2675. |
MENG Qingli, GUAN Zhoubo, FENG Baili, et al. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet(Setaria italica)[J]. Scientia Agricultura Sinica, 2009, 42(8): 2667-2675. | |
[22] | 解云, 郭世华. 谷子品种农艺性状的灰色关联度分析及综合评价[J]. 分子植物育种, 2021, 19(6): 2064-2072. |
XIE Yun, GUO Shihua. Grey correlation degree analysis and comprehensive evaluation of agronomic characters in foxtail millet cultivars[J]. Molecular Plant Breeding, 2021, 19(6): 2064-2072. | |
[23] | 赵禹凯, 王显瑞, 陈高勋, 等. 谷子主要农艺性状的相关和通径分析[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(2): 35-38. |
ZHAO Yukai, WANG Xianrui, CHEN Gaoxun, et al. Correlation analysis and path analysis on major agronomic traits of millet[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(2): 35-38. | |
[24] | 王丹丹, 希日格乐, 孙宇燕, 等. 谷子农艺性状相关性与食味品质分析[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(4): 29-37. |
WANG Dandan, XI Rigele, SUN Yuyan, et al. Analysis on correlation of agronomic traits and eating quality in foxtail millet[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2015, 36(4): 29-37. | |
[25] | 杨慧卿, 王军, 袁峰, 等. 西北春谷区中晚熟组谷子主要农艺性状的相关和通径分析[J]. 河北农业科学, 2010, 14(11): 105-106, 111. |
YANG Huiqing, WANG Jun, YUAN Feng, et al. Correlation analysis and path analysis on major agronomic traits of middle and late mature group of regional test in spring millet area of Northwest China[J]. Journal of Hebei Agricultural Sciences, 2010, 14(11): 105-106, 111. | |
[1] |
Yang X Y, Wan Z W, Perry L, et al. Early millet use in Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3726-3730.
DOI PMID |
[2] | 刘敬科, 刁现民. 我国谷子产业现状与加工发展方向[J]. 农业工程技术(农产品加工业), 2013,(12): 15-17. |
LIU Jingke, DIAO Xianmin. Present situation and processing development direction of millet industry in China[J]. Agriculture Engineering Technology (Agricultural Product Processing Industry), 2013,(12): 15-17. | |
[3] | 张雪峰. 中国谷子产业发展问题研究[D]. 哈尔滨: 东北农业大学, 2013. |
ZHANG Xuefeng. Studies on the Issues of Millet Industry Development in China[D]. Harbin: Northeast Agricultural University, 2013. | |
[4] | Cao X N, Hu Y L, Song J, et al. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet[J]. International Journal of Molecular Sciences, 2022, 23(18): 10792. |
[5] | 李顺国, 刘斐, 刘猛, 等. 我国谷子产业现状、发展趋势及对策建议[J]. 农业现代化研究, 2014, 35(5): 531-535. |
LI Shunguo, LIU Fei, LIU Meng, et al. Current Situation, Development Trend and Countermeasures of Millet Industry in China[J]. Research on Agricultural Modernization, 2014, 35(5): 531-535. | |
[6] | Diao X M. Production and genetic improvement of minor cereals in China[J]. The Crop Journal, 2017, 5(2): 103-114. |
[7] |
Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet[J]. BMC Genetics, 2016, 17: 57.
DOI PMID |
[8] | Kour D, Rana K L, Yadav A N, et al. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes[J]. Environmental Sustainability, 2020, 3(1): 23-34. |
[9] |
刁现民, 程汝宏. 十五年区试数据分析展示谷子糜子育种现状[J]. 中国农业科学, 2017, 50(23): 4469-4474.
DOI |
DIAO Xianmin, CHENG Ruhong. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data[J]. Scientia Agricultura Sinica, 2017, 50(23): 4469-4474. | |
[10] |
王永丽, 王珏, 杜金哲, 等. 不同时期干旱胁迫对谷子农艺性状的影响[J]. 华北农学报, 2012, 27(6): 125-129.
DOI |
WANG Yongli, WANG Jue, DU Jinzhe, et al. Effects of drought stress at different periods on agronomic traits of millet[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6): 125-129. | |
[11] | 徐丽霞, 仪慧兰, 郭二虎, 等. 干旱胁迫对谷子抽穗期生理生化和产量的影响[J]. 山西大学学报(自然科学版), 2016, 39(4): 672-678. |
XU Lixia, YI Huilan, GUO Erhu, et al. Influence of drought stress on physiology characteristics and agronomic traits at heading stage of Setaria italica L[J]. Journal of Shanxi University (Natural Science Edition), 2016, 39(4): 672-678. |
[1] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[2] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[3] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[4] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[5] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[6] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[7] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[8] | 陈勇, 周蕾, 隋春, 蔺彩霞. 32份板蓝根栽培种质在新疆产区的性状表现[J]. 新疆农业科学, 2024, 61(9): 2307-2314. |
[9] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[10] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[11] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[12] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[13] | 苗雨, 陈翠霞, 马艳明, 邢国芳, 董裕生, 陈智军, 王仙, 向莉. 276份中亚大麦种质资源表型性状的遗传多样性分析[J]. 新疆农业科学, 2024, 61(8): 1888-1895. |
[14] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[15] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||