新疆农业科学 ›› 2024, Vol. 61 ›› Issue (10): 2434-2443.DOI: 10.6048/j.issn.1001-4330.2024.10.011

• 园艺特产·林业 • 上一篇    下一篇

基于SMA-SVM模型的茎流速率预测温室西瓜蒸腾量

张静1(), 郭俊先1(), 刘湘江2, 柴扬帆2   

  1. 1.新疆农业大学机电工程学院,乌鲁木齐 830052
    2.浙江大学生物系统工程与食品科学学院,杭州 310000
  • 收稿日期:2024-04-11 出版日期:2024-10-20 发布日期:2024-11-07
  • 通信作者: 郭俊先(1975-),男,新疆巴里坤人,教授,博士,硕士生/博士生导师,研究方向为农业信息智能感知技术与装备,(E-mail)junxianguo@163.com
  • 作者简介:张静(1996-),女,山东菏泽人,硕士研究生,研究方向为作物茎流,(E-mail)2232282799@qq.com
  • 基金资助:
    新疆维吾尔自治区重点研发计划项目“农业传感器与智能感知技术及产品研究开发”(2022B02049-1)

Prediction of watermelon transpiration in a greenhouse considering the stem flow rate based on the SMA-SVM model

ZHANG Jing1(), GUO Junxian1(), LIU Xiangjiang2, CHAI Yangfan2   

  1. 1. College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
  • Received:2024-04-11 Published:2024-10-20 Online:2024-11-07
  • Correspondence author: GUO Junxian (1975-), male, from Balikun, Xinjiang, professor, doctoral supervisor, research direction: agricultural information intelligent perception technology and equipment,(E-mail)junxianguo@163.com
  • Supported by:
    Key R&D Program Project of Xinjiang Uygur Autonomous Region "R & D of Agricultural Sensors and Intelligent Perception Technology and Products"(2022B02049-1)

摘要:

【目的】 基于SMA-SVM模型预测温室西瓜需水量。【方法】 以西瓜茎流速率与气象因子结合的作为特征变量作为模型输入,建立黏菌算法(Slime mold algorithm,SMA)优化的支持向量机(Support vector machine, SVM)的温室西瓜蒸腾量预测模型。【结果】 气象因子与茎流速率共同作为输入要比气象因子单独作为模型输入的蒸腾量预测精度更高,且通过SMA优化后的SVM预测模型预测效果最好。【结论】 茎流速率的SMA-SVM蒸腾预测模型在西瓜三个时期的R2RMSE分别为0.83、0.87、0.92和0.38、0.31和0.15;模型预测值与实际值接近,预测结果可靠。

关键词: 支持向量机; 茎流速率; 蒸腾量; 预测

Abstract:

【Objective】 To accurately predict the water demand of greenhouse watermelons. 【Methods】 A greenhouse watermelon transpiration prediction model was proposed by using a combination of watermelon stem flow rate and meteorological factors as feature variables as model inputs, and a Support Vector Machine (Support Vector Machine, SVM) was established and optimized by slime mold algorithm (slime mold algorithm, SMA). 【Results】 The experimental results showed that the combined use of meteorological factors and stem flow rate as inputs resulted in higher accuracy in predicting transpiration than using meteorological factors alone as model inputs, and the SVM prediction model optimized by SMA had the best prediction performance. 【Conclusion】 The R2 and RMSE of the SMA-SVM transpiration prediction model considering stem flow rate in watermelon at three stages are 0.83, 0.87, 0.92, and 0.38, 0.31, and 0.15, respectively and the predicted values of the model are close to the actual values, and the predicted results are reliable.

Key words: support vector machine; stem flow rate; transpiration rate; prediction

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数:
网站
微信公众号
淘宝购买
微店购买