Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (3): 645-656.DOI: 10.6048/j.issn.1001-4330.2022.03.014
• Horticultural Special Local Products·Agricultural Product Processing • Previous Articles Next Articles
LI Xiaolei1,2(), Wang Kezhong3, PAN Yan1, MA Yan1, XU Bing1, ZHANG Ping1, MENG Xintao1(
)
Received:
2021-05-20
Online:
2022-03-20
Published:
2022-03-28
Correspondence author:
MENG Xintao
Supported by:
李晓磊1,2(), 王克众3, 潘俨1, 马燕1, 徐斌1, 张平1, 孟新涛1(
)
通讯作者:
孟新涛
作者简介:
李晓磊(1994-),女,山东人,硕士,研究方向为果蔬贮藏与加工,(E-mail) 2016178996@qq.com
基金资助:
CLC Number:
LI Xiaolei, Wang Kezhong, PAN Yan, MA Yan, XU Bing, ZHANG Ping, MENG Xintao. Effects of Processing Technology on the Quality of Not-From-Concentrate Apple Juice[J]. Xinjiang Agricultural Sciences, 2022, 59(3): 645-656.
李晓磊, 王克众, 潘俨, 马燕, 徐斌, 张平, 孟新涛. 非浓缩还原苹果汁加工过程中物料感官品质的变化[J]. 新疆农业科学, 2022, 59(3): 645-656.
Fig.3 Changes of peel color and pulp firmness throughout fruit development of Korla fragrant pear Note: Different lowercase letters indicate significant difference among cultivars at alpha =0.05 level
Fig.4 Changes of content of total soluble solid and titratable acid during NFC apple juice processing Note: Different lowercase letters indicate significant difference among cultivars at alpha =0.05 level
Fig.5 Changes in total soluble solid/titratable acidity during NFC apple juice processing Note: Different lowercase letters indicate significant difference among cultivars at alpha =0.05 level
Fig.6 Changes of Oxygen content and Non-enzymatic browing index during NFC apple juice processing Note: Different lowercase letters indicate significant difference among cultivars at alpha =0.05 level
化合物名称 Compound name | CAS# | 分子式 Molecular formula | 保留指数 Retention index | 保留时间 keep time (s) | 漂移时间 Drift time (ms) | |
---|---|---|---|---|---|---|
酮类 | ||||||
1 | 2-丙酮 | C67630 | C3H8O | 494.9 | 110.317 | 1.167 |
2 | 2-庚酮 | C110430 | C7H14O | 883.1 | 405.02 | 1.637 |
醇类 | ||||||
3 | 丙醇 | C71238 | C3H8O | 550 | 129.407 | 1.25 |
4 | 2-甲基丙醇 | C78831 | C4H10O | 614.8 | 158.173 | 1.366 4 |
5 | 5-甲基-2-呋喃甲醇 | C3857258 | C6H8O2 | 959.5 | 541.047 | 1.262 1 |
6 | 正丁醇 | C71363 | C4H10O | 660.3 | 183.397 | 1.180 7 |
7 | 异戊醇 | C137326 | C5H12O | 735.2 | 236.798 | 1.234 |
8 | 2-庚醇 | C543497 | C7H16O | 908.4 | 445.447 | 1.723 4 |
9 | 正己醇 | C111273 | C6H14O | 866.1 | 380.117 | 1.640 1 |
醛类 | ||||||
10 | 丙醛 | C123386 | C3H6O | 496.6 | 110.858 | 1.059 7 |
11 | 戊醛 | C110623 | C5H10O | 713.1 | 219.307 | 1.186 8 |
12 | 丁醛 | C123728 | C4H8O | 582.7 | 142.963 | 1.122 2 |
13 | 己醛 | C66251 | C6H12O | 788.9 | 286.482 | 1.262 2 |
14 | 庚醛 | C111717 | C7H14O | 901.8 | 434.562 | 1.328 5 |
15 | 辛醛 | C124130 | C8H16O | 1 005.1 | 645.225 | 1.822 5 |
16 | 壬醛 | C124196 | C9H18O | 1 094.4 | 914.867 | 1.474 6 |
酯类 | ||||||
17 | 乙酸丙酯 | C109604 | C5H10O2 | 699.6 | 209.352 | 1.481 3 |
18 | 丙酸乙酯 | C105373 | C5H10O2 | 704 | 212.58 | 1.453 |
19 | 乙酸乙酯 | C141786 | C4H8O2 | 602.9 | 152.325 | 1.339 9 |
20 | 异丁酸乙酯 | C97621 | C6H12O2 | 745.6 | 245.555 | 1.185 4 |
21 | 乙酸丁酯 | C123864 | C6H12O2 | 810.6 | 309.898 | 1.239 8 |
22 | 乙酸异戊酯 | C123922 | C7H14O2 | 879.9 | 400.218 | 1.296 7 |
23 | 乙酸戊酯 | C628637 | C7H14O2 | 919.2 | 464.113 | 1.316 9 |
酸类 | ||||||
24 | 乙酸 | C64197 | C2H4O2 | 590.7 | 146.58 | 1.052 9 |
25 | 2-甲基丙酸(异丁酸) | C79312 | C4H8O2 | 765.8 | 263.782 | 1.234 8 |
26 | 2-甲基丁酸 | C116530 | C5H10O2 | 863.7 | 142.874 | 1.585 5 |
萜烯类 | ||||||
27 | α-蒎烯 | C80568 | C10H16 | 928.6 | 480.981 | 1.287 9 |
醚类 | ||||||
28 | 乙二醇单丁醚 | C111762 | C6H14O2 | 907.1 | 443.293 | 1.291 6 |
Table 1 The sample Volatiles identified by GC-IMS
化合物名称 Compound name | CAS# | 分子式 Molecular formula | 保留指数 Retention index | 保留时间 keep time (s) | 漂移时间 Drift time (ms) | |
---|---|---|---|---|---|---|
酮类 | ||||||
1 | 2-丙酮 | C67630 | C3H8O | 494.9 | 110.317 | 1.167 |
2 | 2-庚酮 | C110430 | C7H14O | 883.1 | 405.02 | 1.637 |
醇类 | ||||||
3 | 丙醇 | C71238 | C3H8O | 550 | 129.407 | 1.25 |
4 | 2-甲基丙醇 | C78831 | C4H10O | 614.8 | 158.173 | 1.366 4 |
5 | 5-甲基-2-呋喃甲醇 | C3857258 | C6H8O2 | 959.5 | 541.047 | 1.262 1 |
6 | 正丁醇 | C71363 | C4H10O | 660.3 | 183.397 | 1.180 7 |
7 | 异戊醇 | C137326 | C5H12O | 735.2 | 236.798 | 1.234 |
8 | 2-庚醇 | C543497 | C7H16O | 908.4 | 445.447 | 1.723 4 |
9 | 正己醇 | C111273 | C6H14O | 866.1 | 380.117 | 1.640 1 |
醛类 | ||||||
10 | 丙醛 | C123386 | C3H6O | 496.6 | 110.858 | 1.059 7 |
11 | 戊醛 | C110623 | C5H10O | 713.1 | 219.307 | 1.186 8 |
12 | 丁醛 | C123728 | C4H8O | 582.7 | 142.963 | 1.122 2 |
13 | 己醛 | C66251 | C6H12O | 788.9 | 286.482 | 1.262 2 |
14 | 庚醛 | C111717 | C7H14O | 901.8 | 434.562 | 1.328 5 |
15 | 辛醛 | C124130 | C8H16O | 1 005.1 | 645.225 | 1.822 5 |
16 | 壬醛 | C124196 | C9H18O | 1 094.4 | 914.867 | 1.474 6 |
酯类 | ||||||
17 | 乙酸丙酯 | C109604 | C5H10O2 | 699.6 | 209.352 | 1.481 3 |
18 | 丙酸乙酯 | C105373 | C5H10O2 | 704 | 212.58 | 1.453 |
19 | 乙酸乙酯 | C141786 | C4H8O2 | 602.9 | 152.325 | 1.339 9 |
20 | 异丁酸乙酯 | C97621 | C6H12O2 | 745.6 | 245.555 | 1.185 4 |
21 | 乙酸丁酯 | C123864 | C6H12O2 | 810.6 | 309.898 | 1.239 8 |
22 | 乙酸异戊酯 | C123922 | C7H14O2 | 879.9 | 400.218 | 1.296 7 |
23 | 乙酸戊酯 | C628637 | C7H14O2 | 919.2 | 464.113 | 1.316 9 |
酸类 | ||||||
24 | 乙酸 | C64197 | C2H4O2 | 590.7 | 146.58 | 1.052 9 |
25 | 2-甲基丙酸(异丁酸) | C79312 | C4H8O2 | 765.8 | 263.782 | 1.234 8 |
26 | 2-甲基丁酸 | C116530 | C5H10O2 | 863.7 | 142.874 | 1.585 5 |
萜烯类 | ||||||
27 | α-蒎烯 | C80568 | C10H16 | 928.6 | 480.981 | 1.287 9 |
醚类 | ||||||
28 | 乙二醇单丁醚 | C111762 | C6H14O2 | 907.1 | 443.293 | 1.291 6 |
Fig.8 Summary of the ion mobility spectra of juice in different processing stages Note:1-2 are ketones; 3-9 are alcohols; 10-16 are aldehydes; 17-23 are esters; 24-26 are acids; 27 belongs to terpene; 28 belongs to the ether
Fig.9 Peak appearance summary of juice in different processing stages Note:A The content of 9 flavor substances in juice at different processing stages had no significant change; B 4 substances rich in raw materials but reduced after processing; C 6 flavoring substances with high content in juice during juicing and color protection; D The content of 3 flavor substances is reduced in juicing; E With the continuous preparation of fruit juice, the contents of 6 flavor substances changed significantly after enzyme elimination
[1] | 田由. 不同苹果品种及加工关键参数对非浓缩还原苹果汁品质的影响[D]. 西安: 陕西师范大学, 2018. |
TIAN You. Effects of Different Aplle Cultivars and Processing Key Parameters on the Quality of Not From Concentrate Apple Juices[D]. Xi'an: Shaanxi Normal University, 2018. | |
[2] | 潘俨. 库尔勒香梨果实发育及采后糖代谢与呼吸代谢关系的研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
PAN Yan. Fruit development of Korla fragrant pear and the relationship between postharvest sugar metabolism and respiration metabolism[D]. Urumqi: Xinjiang Agricultural University, 2016. | |
[3] | 梁亚男, 叶发银, 雷琳, 等. 苹果汁褐变控制技术研究进展[J]. 食品与发酵工业, 2018, 44(3): 286-292. |
LIANG Yanan, Ye Fayin, LEI Lin, et al. Research progress of apple juice browning control technology[J]. Food and Fermentation Industries, 2018, 44(3): 286-292. | |
[4] |
Gottfried K, Mathias K, Gössinger M, et al. Effect of thermal treatment on the quality of cloudy apple juice[J]. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5453-5460.
DOI URL |
[5] | Benitez E I, Lozano J E. Effect of gelatin on apple juice turbidity[J]. Latin American Applied Research, 2007, 37(4): 261-266. |
[6] | Santhirasegaram V, Razali Z, George D S, et al. Comparison of UV-C treatmentand thermal pasteurization on quality of Chokanan mango (Mangifera indica L.)juice[J]. Food and Bioproducts Processing, 2015, (94): 313-321. |
[7] | Silva V M, Sato A C K, Barbosa G, et al. The effect of homogenisation on the stability of pineapple pulp[J]. International Journal of Food Science&Technology, 2010, 45(10): 2127-2133. |
[8] | 魏康丽, 刘畅, 丁海臻, 等. 苹果果肉可溶性固形物可溶性糖与光学性质的关联研究[J]. 食品科学, 2019, 40(18): 9-15. |
WEI Kangli, LIU Chang, DING Haizhen, et al. Study on the relationship between soluble sugar and optical properties of soluble solids in apple pulp[J]. Food Science, 2019, 40(18): 9-15. | |
[9] | 师源, 何强, 李莹, 等. 高效液相色谱法测定浓缩果汁中5种可溶性糖[J]. 化学分析计量, 2019, 28(1): 97-100. |
SHI Yuan, HE Qiang, LI Ying, et al. Determination of 5 soluble sugars in concentrated fruit juice by high performance liquid chromatography[J]. Chemical Analysis And Meterage, 2019, 28(1): 97-100. | |
[10] | 郑丽静. 苹果果实糖酸特性及其与风味关系研究[D]. 北京: 中国农业科学院, 2015. |
ZHENG Lijing. Sugar and acid characteristics of apple fruit and its relationship with flavor[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. | |
[11] | 郭燕, 梁俊, 李敏敏, 等. 高效液相色谱法测定苹果果实中的有机酸[J]. 食品科学, 2012, 33(2): 234-237. |
GUO Yan, LIANG Jun, LI Minmin, et al. Determination of organic acids in apple fruits by high performance liquid chromatography[J]. Food Science, 2012, 33(2): 234-237. | |
[12] | 饶静, 李春扬, 张晓磊, 等. 高效液相色谱法同时测定苹果醋及原料中的17种有机酸[J]. 中国酿造, 2018, 37(4): 174-178. |
RAO Jing, LI Chunyang, ZHANG Xiaolei, et al. Simultaneous determination of 17 organic acids in apple cider vinegar and raw materials by high performance liquid chromatography[J]. China Brewing, 2018, 37(4): 174-178. | |
[13] | 谢季云, 赵晓敏, 汪永琴, 等. 1-MCP处理对不同期采收的阿克苏红富士苹果在采后贮藏期糖代谢的影响[J]. 现代食品科技, 2018, 34(9): 111-121, 214. |
XIE Jiyun, ZHAO Xiaomin, WANG Yongqin, et al. Effects of 1-MCP treatment on sugar metabolism of Aksu Red Fuji apples harvested at different stages during postharvest storage[J]. Modern Food Science and Technology, 2018, 34(9): 111-121, 214. | |
[14] |
Caminiti I M, Noci F, Munoz A, et al. Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend[J]. Food Chemistry, 2010, 124(4): 1387-1392.
DOI URL |
[15] | 张波, 韩舜愈, 蒋玉梅, 等. 杏果挥发性风味成分分析[J]. 食品科学, 2008, 29(12): 559-563. |
ZHANG Bo, HAN Shunyu, JIANG Yumei, et al. Analysis of Volatile Flavor Components of Apricot Fruit[J]. Food Science, 2008, 29(12): 559-563. | |
[16] | Philip E S, Manuel G M. Quantification of volatile constituents inorange juice drinks and its use for comparison with pure juices by multivariate analysis[J]. Lebensm Wissu Technol, 1997, 5(30): 497-501. |
[17] | Forney C F, Jordan M A, Cue K R. Identification of aroma-active compounds of whole and macerated 'Honeyc-risp' and 'Ambrosia' apples[J]. Acta Horticulturae, 2016, 20(1120): 137-142. |
[18] | 石金瑞, 刘潇然, 刘翠华, 等. ‘瑞阳’及其亲本‘秦冠’和‘富士’苹果香气物质的比较[J]. 西北农业学报, 2018, 27(7): 977-987. |
SHI Jinrui, LIU Xiaoran, LIU Cuihua, et al. Comparison of aroma substances in "Ruiyang" and its parents "Qin Guan" and "Fuji" apple[J]. Northwest Agricultural Journal, 2018, 27(7): 977-987. | |
[19] | 万鹏, 梁国平, 马丽娟, 等. 19个苹果品种果实香气成分的GC-MS分析[J]. 食品工业科技, 2019, 40(14): 227-232. |
WAN Peng, LIANG Guoping, MA Lijuan, et al. GC-MS analysis of fruit aroma components of 19 apple varieties[J]. Science and Technology of Food Industry, 2019, 40(14): 227-232. | |
[20] | 吴昕烨, 刘璇, 毕金峰, 等. 两种苹果(等外果)汁贮藏期间挥发性成分变化[J]. 食品与发酵工业, 2019, 45(10): 208-215. |
WU Xinye, LIU Xuan, BI Jinfeng, et al. Changes of volatile components of two kinds of apple juices during storage[J]. Food and Fermentation Industries, 2019, 45(10): 208-215. | |
[21] | 李亚会, 龚霄, 任芳, 等. 基于气相离子迁移谱分析不同贮藏条件下番荔枝的风味变化[J]. 食品工业科技, 2019, 40(18): 263-266, 272. |
LI Yahui, GONG Xiao, REN Fang, et al. Based on gas phase ion mobility spectroscopy to analyze the flavor changes of sugar apples under different storage conditions[J]. Science and Technology of Food Industry, 2019, 40(18): 263-266, 272. | |
[22] | 刘俊灵. 苹果新品种“瑞雪”果实挥发性香气物质分析及其遗传特性初探[D]. 杨凌: 西北农林科技大学, 2019. |
LIU Junling. Analysis of Volatile Aroma Substances of New Apple Variety "Ruixue" Fruits and Preliminary Study on Their Genetic Characteristics[D]. Yangling: Northwest A&F University, 2019. | |
[23] | 代蕾, 孙翠霞, 刘夫国, 等. 高压均质对果蔬汁品质影响研究进展[J]. 食品工业科技, 2016, 37(12): 389-393. |
DAI Lei, SUN Cuixia, LIU Fuguo, et al. Research progress on the effect of high pressure homogenization on the quality of fruit and vegetable juice[J]. Food Industry Science and Technology, 2016, 37(12): 389-393. | |
[24] | 王丽娜, 马荣山, 孙志健, 等. 均质工艺对苹果浊汁品质的影响[J]. 食品工业科技, 2006, 19(4): 74-76. |
WANG Lina, MA Rongshan, SUN Zhijian, et al. The effect of homogenization process on the quality of cloudy apple juice[J]. Science and Technology of Food Industry, 2006, 19(4): 74-76. | |
[25] | 李敏. 浓缩苹果汁加工工艺对芳香物质的影响及工艺优化研究[D]. 杨凌: 西北农林科技大学, 2011. |
LI Min. Study on the influence of concentrated apple juice processing technology on aromatic substances and process optimization[D]. Yangling: Northwest A&F University, 2011. |
[1] | JIN Juan, LI lili, YANG Lei, FAN Dingyu, HAO Qing. Analysis on the Development status of Xinjiang Jujube Industry [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 106-110. |
[2] | ZHANG Zheng, WEI Jia, GUO Wenli, XU Mingqiang, MA Yan, XU Bin, ZHAO Zhixia, YUAN Yuyao, MENG Xintao, WEI Nan, WU Bin. Development Status and Demand of Preservation and Processing Industry of Prunes in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 111-115. |
[3] | WU Yating, CHEN He, ZHENG Nan, MA Xianlan, ZHOU Lina, ZHAO Yankun. Current situation and development trend prospect of Xinjiang characteristic dairy industry [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 158-162. |
[4] | HOU Xianzheng, XIAO Tong, CHEN Yulan, WEI Jiyu. The spatial effects and mechanism of digital technology innovation on agricultural economic resilience [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 196-205. |
[5] | YUE Rongqiang, ZHANG Qiong, WANG Fang, DENG Wenwen, CHEN Yu, Maiwulanjiang Mamut, Nurmanquli Batur. Improve the academic quality and influence of agricultural academic journals [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 256-260. |
[6] | WANG Junduo, CUI Yujiang, LIANG Yajun, GONG Zhaolong, ZHENG Junyun, LI Xueyuan. Xinjiang cotton production advantageous regional layout scheme [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 60-69. |
[7] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[8] | YANG Minghua, LIAO Biyong, LIU Qiang, PENG Yuncheng, Dawulai Jiekeshan, FENG Guorui, TANG Shimin. Study on variation of grain nutritional quality of glutinous maize [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2087-2093. |
[9] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[10] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[11] | LIU Jing, DU Mingchuan, ZHANG Wenting, BAO Haijuan, JING Meiling, DU Wenhua. Screening of triticale germplasm in different areas of Qinghai [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2183-2190. |
[12] | TIAN Haiyan, ZHANG Zhanqin, XIE Jianhui, WANG Jianjiang, YANG Xiangkun. Study on the relationship between Lycopene and main quality characters of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2197-2202. |
[13] | ZHANG Tingjun, LI Zihui, CUI Yujiang, SUN Xiaogui, CHEN Fang. Effects of microbial agents on cotton growth and soil physico-chemical properties [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2269-2276. |
[14] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[15] | QIAO Yajie, FU Huixin, QIAO Xue, MENG Xintao, ZHANG Ting, PAN Yan. Study on the variation of fresh beef quality under different storage temperature conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2323-2329. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 271
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||